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Abstract

We build a model of firm-level innovation, productivity growth and reallocation featuring
endogenous entry and exit. A new and central economic force is the selection between high-
and low-type firms, which differ in terms of their innovative capacity. We estimate the param-
eters of the model using US Census micro data on firm-level output, R&D and patenting. The
model provides a good fit to the dynamics of firm entry and exit, output and R&D. Taxing the
continued operation of incumbents can lead to sizable gains (of the order of 1.4% improve-
ment in welfare) by encouraging exit of less productive firms and freeing up skilled labor
to be used for R&D by high-type incumbents. Subsidies to the R&D of incumbents do not
achieve this objective because they encourage the survival and expansion of low-type firms.
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1 Introduction

Industrial policies that subsidize (often large) incumbent firms, either permanently or when they
face distress, are pervasive. They have been the mainstay of government policies in China over
the last two and a half decades as well as widely used in Europe (e.g., Owen, 1999; Lerner,
2009).1 The majority of regional aid in Europe also ends up going to larger firms because they
tend to be more effective at obtaining subsidies (Criscuolo et al., 2012). Despite the ubiquity of
such policies, their effects are poorly understood. They may encourage incumbents to undertake
greater investments, increase productivity and protect employment (e.g., Aghion et al., 2015).
But they may also reduce economic growth by slowing down reallocation and even discouraging
innovation by both continuing firms and new entrants.2

In this paper, we develop a model of endogenous reallocation and innovation with heteroge-
neous firms to investigate the implications of different types of industrial policies. Our model
builds on the endogenous technological change literature (e.g., Romer, 1990; Aghion and Howitt,
1992; Grossman and Helpman, 1991) and in particular, on Klette and Kortum (2004)’s and Lentz
and Mortensen (2008)’s analyses of firm-level innovation, but extends these models by incor-
porating endogenous exit and reallocation. These margins are critical for our investigation of
different types of industrial policies as we explain below.

In our model, incumbents and entrants hire skilled labor to perform R&D. Successful inno-
vation enables a firm to take over a leading-edge technology from its current holder, adding to
the number of product lines the firm is operating. Because operating a product line entails a
fixed cost (which is also in terms of skilled labor), firms may decide to exit some of the product
lines in which they have the leading-edge technology when this technology has sufficiently low
productivity relative to the equilibrium wage. Finally, firms have heterogeneous (high and low)
types, which determine their “innovative capacity”. We assume that firm type changes over time,
and in particular, high-type firms can become low-type, which is important for accommodating
the possibility that firms that have grown large over time may have ceased to be innovative.

The interplay of endogenous exit and innovation and exogenous transitions from high to low
type introduces a selection effect, determining the composition of active product lines operated by
high-type firms. There is positive selection as the fraction of active product lines operated by
high-type firms expands over time because low-type firms innovate less and are more likely to

1The amount spent on bailouts and industrial policy by the European Union in 2010 was about 1.18 trillion euros,
which amounts to 9.6% of EU GDP (European Commission, 2011, page 8).

2The impact of these policies on the reallocation of resources may be particularly important to take into account.
Foster et al. (2001, 2006) report that reallocation, broadly defined to include entry and exit, accounts for around 50% of
manufacturing and 90% of US retail productivity growth. These figures probably underestimate the full contribution
of reallocation since entrants’ prices tend to be below industry average leading to a downward bias in their estimated
TFP (Foster et al., 2008). As a result the contribution of reallocation to aggregate productivity growth in the US across
all sectors is probably substantially higher. Numerous papers looking at productivity growth in other countries also
find a similarly important role for differences in reallocation in accounting for differences in aggregate productivity
growth. For example, Hsieh and Klenow (2009, 2014), Bartelsman et al. (2013) and Syverson (2011) discuss how
variations in reallocation across countries play a major role in explaining differences in productivity levels.

1



Innovation, Reallocation, and Growth

exit endogenously. Countering this there is also negative selection resulting from the fact that
high-type firms transition to low type. The balance of these two forces will determine whether
young (and small) firms are more innovative and contribute more to growth.

The key market failure in our model is related to skilled labor. Because of the quality ladder
structure (whereby firms build on the quality level of existing leaders), R&D creates positive
spillovers on other firms. This implies there will be underinvestment in R&D, and thus lower than
socially optimal demand for the factor of production used in R&D, skilled labor. This implies that
too high a fraction of skilled workers will be employed in operation activities, and thus all else
equal, a welfare-maximizing social planner would like to reallocate skilled labor back to R&D,
and especially away from the operations of low-type firms. However, our quantitative analysis
will show that, despite the underinvestment in R&D and the emphasis on R&D subsidies in the
previous literature, this objective cannot be successfully achieved by R&D subsidies to either
incumbents or entrants, because such subsidies would go to both high- and low-type firms.
Rather, taxing the continued operation of the incumbents (or alternatively subsidizing exit) is
much more powerful in freeing up skilled labor, because such taxes fall disproportionately on
low-type firms, which are more likely to be near the exit margin.

Our focus on the reallocation (and misallocation) of R&D inputs, which are critical for pro-
ductivity growth, is different from that of much of the literature, which emphasizes the real-
location of production inputs. Though in practice there is not a hard line demarcating R&D
and production inputs, our separation of these two sets of inputs enables us to highlight our
main contribution in a more transparent manner, and emphasizes that misallocation may affect
equilibrium growth as well.

Despite the various dimensions of firm-level decisions, heterogeneity, and selection effects,
which will prove important in our estimation and quantitative exercises, we show that the model
is tractable and that much of the equilibrium can be characterized in closed form (conditional on
the wage rate, which does not admit a closed-form solution). This equilibrium characterization
then enables the estimation of the model’s parameters using simulated method of moments.

The data we use for estimation come from the Census Bureau’s Longitudinal Business Data-
base and Census of Manufacturers, the National Science Foundation’s Survey of Industrial Re-
search and Development, and the NBER Patent Database. We design our sample around inno-
vative firms that are in operation during the 1987-1997 period. As discussed in greater detail
below, the combination of these data sources and our sample design permits us to study the full
distribution of innovative firms, which is important when considering reallocation of resources
for innovation, and to match the model’s focus on R&D-based firms. Our model closely links the
growth dynamics of firms to their underlying innovation efforts and outcomes, and we quan-
tify the reallocation of resources necessary for innovation. Our sample contains over 98% of the
industrial R&D conducted in the US during this period.

We compute 18 moments capturing key features of firm-level R&D behavior, shipments
growth, employment growth and exit, and how these moments vary by firm size and age. We use
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these moments to estimate the 8 parameters of our model and 5 parameters are calibrated using
conventional values. The model performs well and matches these 18 moments quite closely. In
addition, we show that a variety of correlations implied by the model (not targeted in the esti-
mation) are similar to the same correlations computed from the data, bolstering our confidence
in the model and our subsequent policy analysis.

We then use our model to study the effects of various counterfactual policies and gain in-
sights about whether substantial improvements in economic growth and welfare are possible. In
addition to illustrating the aforementioned effects of different types of policies, our quantitative
analysis enables us to compute the socially optimal allocation chosen by a planner who controls
R&D investments, and entry and exit decisions of different types of firms. We find that such
an allocation would achieve a 2.94% growth rate per annum (relative to 2.26% in equilibrium)
and a 4.47% increase in welfare. The social planner achieves this by forcing low-type incumbents
to exit at a substantial rate, reducing their R&D, and increasing the R&D of high-type incum-
bents. These policies induce a strong selection away from low-type firms where the productivity
of skilled labor is less than in high-type firms. The socially optimal allocation is not achievable
without type-specific taxes, however. Instead, with just (uniform) taxes on operations and subsi-
dies to incumbent R&D, growth can be increased to about 2.54% and welfare can be increased by
1.4%. Optimal policies in this case involve a sizable tax, of about 70%, on the continued operation
of incumbents alone, which leverages the selection effect (just like what the social planner was
able to achieve directly).

Our baseline empirical analysis uses unweighted moments and focuses on continuously-
innovative firms. We show that both our estimation results and quantitative policy conclusions
are robust if we instead use employment-weighted moments or also include non-innovative firms
in our sample (which however forces us to drop the R&D moments). The results are also not sen-
sitive to excluding mergers and acquisitions related activities. We further document that our
results are robust to various variations of the model, including modifying the technology of fixed
costs so that it depends on both skilled and unskilled labor; including costs of factor reallocation;
generalizing the model to more than two types of firms; and incorporating endogenous supply
of skills.

Our paper is linked to a number of different literatures. First, it is most closely related to
models of firm innovation and dynamics in general equilibrium pioneered by Klette and Kortum
(2004) and Lentz and Mortensen (2008). As already mentioned, we extend these papers in a
number of noteworthy dimensions. Most importantly, both papers assume unit elastic demands
and no fixed costs of operations, and thus do not feature endogenous exit (obsolescence) of low-
productivity products, which removes the issues related to our main focus in this paper—the
impact of different types of policies on equilibrium reallocation and selection of firms. In addi-
tion, though Lentz and Mortensen allow for firm heterogeneity, this does not affect innovative
capacity in their model, ruling out any misallocation of R&D inputs, which is central for our fo-
cus and policy analysis. Second, our paper is related to the growing literature on firm dynamics,
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reallocation and misallocation3, but is distinguished by our framework which marries the issue
of reallocation to innovation, and by our focus on the reallocation and misallocation of R&D in-
puts (skilled labor). We are also not aware of any papers in these two literatures that investigate
the equilibrium implications of different types of industrial policies, including R&D subsidies.
On this last point, some of our emphasis on the distortions that are caused by R&D subsidies are
related to Goolsbee (1998), Romer (2001) and Wilson (2009) who point out that R&D subsidies
may primarily increase the wages of inelastic inputs (such as R&D workers) rather than spurring
additional innovation, and to Akcigit et al. (2016a) who suggest that R&D subsidies may be inef-
fective when other complementary investments in basic science are not subsidized as well. None
of these papers develop a comprehensive framework for studying the effects of different types
of policies on selection, reallocation and innovation, nor do they obtain our main substantive
conclusions on the ineffectiveness of R&D subsidies and the critical role of taxing incumbents for
generating positive selection across firms and productivity growth.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 describes
our data and quantitative framework. Section 4 presents our quantified parameter estimates, as-
sesses the model’s fit with the data, and provides validation tests. Section 5 examines the impact
of counterfactual policy experiments on the economy’s innovation and growth. Section 6 reports
the results from a number of robustness exercises. The last section concludes, while Appendix
A contains some of the proofs omitted from the text, and Appendix B, which is available online,
contains additional results.

2 Model

In this section, we introduce our theoretical framework and characterize the stationary balanced
growth equilibrium.

2.1 Preferences and Final Good Technology

Our economy is in continuous time and admits a representative household with the following
CRRA preferences

U0 =
∫ ∞

0
exp (−ρt)

C (t)1−ϑ − 1
1− ϑ

dt, (1)

where ρ > 0 is the discount factor and C (t) is a consumption aggregate given by

C (t) =
(∫
N (t)

cj (t)
ε−1

ε dj
) ε

ε−1

, (2)

3For example, Jovanovic (1982); Hopenhayn (1992, 2012); Hopenhayn and Rogerson (1993); Ericson and Pakes
(1995); Davis et al. (2006); Restuccia and Rogerson (2008); Guner et al. (2008); Hsieh and Klenow (2009, 2014); Jones
(2011); Peters (2016); Garcia-Macia et al. (2016); and Hsieh et al. (2013).
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where cj (t) is the consumption of product j at time t, ε > 1 is the elasticity of substitution
between products, and N (t) ⊂ [0, 1] is the set of active product lines at time t. The reason why
not all products are active at each point in time will be made clear below. Throughout we choose
this consumption aggregate as the numeraire.

We assume that the economy is closed, and because R&D and production costs are in terms
of labor, we have cj (t) = yj (t), where yj (t) is the amount of product j produced at time t. This
also implies that aggregate output (GDP) is equal to aggregate consumption,

Y (t) = C (t) .

There are two types of labor in the economy, skilled and unskilled. Unskilled workers are
used in the production of the active products (total labor demand denoted by LP), while skilled
workers perform R&D functions (total labor demand LRD) and are also employed to cover the
(fixed) costs of operations, such as management, back-office functions and other non-production
work (total labor demand LF). We assume that the operation of each product requires φ > 0
units of skilled labor.

The representative household has a fixed skilled labor supply of measure LS and an unskilled
labor supply of measure 1, both supplied inelastically. The labor market-clearing condition then
equates total labor demand to labor supply for each type of labor:

LP = 1 and LF + LRD = LS.

With this specification, the representative household maximizes its utility (1) subject to the
flow budget constraint

Ȧ (t) + C (t) ≤ r (t) A (t) + wu (t) + LSws (t) , (3)

and the usual no-Ponzi condition,
∫ ∞

0 exp(−r(t)t)A(t)dt ≥ 0, where A (t) =
∫
N (t) Vj (t) dj is the

asset position of the representative household, r (t) is the equilibrium interest rate on assets, and
ws (t) and wu (t) denote skilled and unskilled wages, respectively. In what follows, we focus on
stationary equilibria and drop the time subscripts when this causes no confusion.

For future reference, we also note that the representative household utility maximization
problem delivers the standard Euler equation,

Ċ
C

=
r− ρ

ϑ
. (4)

2.2 Intermediate Good Production

Intermediate good (product) j is produced by the monopolist who has the best (leading-edge)
technology in that product line, though a single monopolist can own multiple product lines and
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can produce multiple intermediate goods simultaneously.
At any given point in time, there are two different sets of firms: (i) a set of active firms F

that own at least one product line; and (ii) a set of potential entrants of measure 1 that do not
currently own any product line but invest in R&D for innovation.

Consider firm f ∈ F that has the leading-edge technology in product j. We assume that,
once it hires φ units of skilled labor for operation, this firm has access to a linear technology in
product line j of the form

y f ,j = q f ,jl f ,j, (5)

where q f ,j is the leading-edge technology of firm f in intermediate good j (which means that
firm f has the best technology for this intermediate good), and l f ,j is the number of workers it
employs for producing this good.

Let us denote by J f the set of active product lines where firm f has the leading-edge technol-
ogy and chooses to produce, and by n f the cardinality of this set, and also define

Q f ≡
{

q f ,j1 , q f ,j2 , ..., q f ,jn
}

as the set of productivities of firm f in product lines in the set J f . In what follows, we also drop
the f subscript when this causes no confusion; for example, we refer to q f ,j as qj.

With this notation, equation (5) implies that the marginal cost of production in line j is simply
wu/qj. Since all allocations will depend on productivity relative to the unskilled wage, we define
the relative productivity of a product with productivity q as

q̂ ≡ q
wu . (6)

We also define the productivity index of the economy as

Q ≡
(∫
N

qε−1
j dj

) 1
ε−1

. (7)

2.3 Firm Heterogeneity and Dynamics

Firms differ in terms of their innovative capacities. Upon successful entry into the economy, each
firm draws its type θ ∈

{
θH, θL}, corresponding to one of two possible types high (H) and low

(L). We assume:
Pr
(

θ = θH
)
= α and Pr

(
θ = θL

)
= 1− α,

where α ∈ (0, 1) and θH > θL > 0. Firm type impacts innovation as described below. We assume
that while low-type is an absorbing state, high-type firms transition to low-type at the exogenous
flow rate ν > 0.

In addition to the transition from high to low type, each firm is also subject to an exogenous
destructive shock at the rate ϕ. Once a firm is hit by this shock, its value declines to zero and it
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exits the economy.

Innovation by incumbents is modeled as follows. When firm f with type θ f hires h f workers
for developing a new product, it adds one more product into its portfolio at the flow rate

X f = θ
γ
f nγ

f h1−γ
f , (8)

where γ ∈ (0, 1) and n f is the number of product lines that firm f owns in total. Suppressing the
f subscripts again, this implies the following cost function for R&D

C (x, n, θ) = wsnx
1

1−γ θ−
γ

1−γ ≡ wsnG (x, θ) , (9)

where x ≡ X/n is the “innovation intensity” (innovation effort per product) and G (x, θ) ≡
x

1
1−γ θ−

γ
1−γ , defined in (9), denotes the skilled labor requirement for a firm with innovative capacity

θ to generate a per product innovation rate of x.

We assume that research is undirected across all product lines, meaning that firms do not know
ex ante upon which particular product line they will innovate. This implies that their expected
return to R&D is the expected value across all product lines j ∈ [0, 1].

When a firm innovates over a product line j, it increases the productivity of this product line
j by λq̄, where λ > 0 and

q̄ ≡
∫ 1

0
qjdj

is the average quality over all product lines. That is,

qj (t+) = qj + λq̄, (10)

where t+ refers to the instant after time t. Note also that equation (10) applies even if product
line j is not currently active so that the dynamics of productivity at the product line level are
independent of whether the product line in question is currently active or not.

What happens following innovation? The firm with the improved technology in product line
j takes over this product line, but in principle, the firm that previously had the leading-edge
technology might still compete if the current owner tried to set a very high price. To prevent
this possibility, we follow Acemoglu et al. (2012) and assume that there is a two-stage pricing
game between any firm that wishes to supply a product j ∈ [0, 1], whereby each firm first has to
enter and pay a small cost ε > 0, and then all firms that have entered simultaneously set prices.
We take ε → 0 for simplicity. Since the price setting after entry forces Bertrand competition, the
more productive firm will be able to make any sales and profits, and thus only this firm will
pay the cost ε and enter. But then in equilibrium, the firm with the leading-edge technology can
charge the monopoly price, regardless of the productivity gap between itself and the next best
technology. This enables us to characterize prices in a simple fashion in the next subsection.
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2.4 Equilibrium Prices and Profits

First note that from the utility function in (2), the inverse demand function for active product
line j ∈ N is

pj = C
1
ε c−

1
ε

j .

Given the market structure described in the previous subsection, the firm with the leading-edge
technology can act as a monopolist and thus solves the following maximization problem,

π
(
q̂j
)
= max

cj≥0

{(
C

1
ε c−

1
ε

j − q̂−1
j

)
cj

}
,

where we use π
(
q̂j
)

to designate the firm’s profit as a function of only its relative quality q̂j

after substituting for the unskilled wage, wu, from (6). The price and consumption level of
intermediate good j follow from this maximization as

pj =
ε

ε− 1
q̂−1

j and cj =

(
ε− 1

ε

)ε

Cq̂ε
j , (11)

and equilibrium profits can then be computed as

π
(
q̂j
)
=

1
ε− 1

(
ε− 1

ε

)ε

Cq̂ε−1
j .

Since the final good is the numeraire, (2) also implies

(∫
N

p1−ε
j dj

) 1
1−ε

= 1.

Substituting cj from (11) into the production function (2) and integrating over N , we obtain the
unskilled wage rate as

wu =
ε− 1

ε
Q, (12)

where Q is given in (7).

2.5 Entry and Exit

There is a unit measure of potential entrants. Each entrant has access to an R&D technology
G
(
xentry, θE), where the function G was defined in (9) above and specifies the number of skilled

workers necessary for generating an innovation rate of xentry > 0. Thus an entrant wishing to
achieve an innovation rate of xentry would need to hire

hentry = G
(

xentry, θE
)

(13)

8



Innovation, Reallocation, and Growth

skilled workers. This specification implies that a potential entrant has access to the same R&D
technology that an incumbent with innovative capacity θE and a single active product would
have had.

Following a successful innovation, the entrant improves the productivity of a randomly cho-
sen product line by λq̄, and at this point, the initial type of a firm, θ ∈

{
θH, θL} is also realized.

This description implies the following optimization problem for entrants:

max
xentry≥0

{
xentryEVentry (q̂ + λ ¯̂q, θ)− wsG

(
xentry, θE

)}
, (14)

where EVentry (·) is the expected value of entry (and the expectation is over the relative produc-
tivity q̂ of the single product the successful entrants will obtain and firm type θ ∈

{
θH, θL}).

The maximization in (14) determines the R&D intensity of an entrant. Given that there is a unit
measure of potential entrants, xentry is also equal to the total entry flow rate.

Exit (of products and firms) has three causes:

1. There is an exogenous destructive shock at the rate ϕ > 0 , which causes the firm to exit and
shut down all its product lines.

2. There will be creative destruction, because of innovation by other firms replacing the leading-
edge technology in a particular product line.

3. There will be endogenous obsolescence, meaning that firms will voluntarily shut down some
product lines because they are no longer sufficiently profitable relative to the fixed cost of
operation.

Due to the first and third factors, the measure of inactive product lines will be positive.

2.6 Value Functions

We normalize all the growing variables by Q (t) to keep the stationary equilibrium values con-
stant. Let us denote the normalized value of a generic variable X by X̃. Let τ denote the average
creative destruction rate which is endogenously determined in equilibrium. Then the stationary
equilibrium value function for a low-type firm can be written as

rṼl
(
Q̂
)
= max


0, max

x≥0


∑

q̂∈Q̂

 π̃ (q̂)− w̃sφ+

τ
[
Ṽl
(
Q̂\ {q̂}

)
− Ṽl

(
Q̂
)]

+
∂Ṽl(Q̂)

∂q̂
∂q̂

∂wu
∂wu

∂t


−nw̃sG

(
x, θL)

+nx
[
EṼl

(
Q̂ ∪ {q̂ + λ ¯̂q}

)
− Ṽl

(
Q̂
)]

+ϕ
[
0− Ṽl

(
Q̂
)]




, (15)

where Q̂ ∪
{

q̂j′
}

denotes the new portfolio of the firm after successfully innovating in product
line j′. Similarly Q̂\

{
q̂j
}

denotes the loss of a product with technology q̂j from firm f ’s portfolio
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Q̂ due to creative destruction.4

The value function (15) can be interpreted as follows. Given discounting at the rate r, the
left-hand side is the flow value of a low-type firm with a set of product lines given by Q̂. The
right-hand side includes the components that make up this flow value. The first line (inside
the summation) includes the instantaneous operating profits, minus the fixed costs of operation,
plus the change in firm value if any of its products gets replaced by another firm through creative
destruction at the rate τ, plus the change in firm value due to the the increase in the economy-
wide wage. This last term accounts for the fact that as the wage rate increases, the relative
productivity of each of the products that the firm operates declines. The second line subtracts
the R&D expenditure by firm f . The third line expresses the change in firm value when the low-
type firm is successful with its R&D investment at the rate x. The last line shows the change in
value when the firm has to exit due to an exogenous destructive shock at the rate ϕ.

Similarly, we can write the value function of a high-type firm as

rṼh
(
Q̂
)
= max


0, max

x≥0



∑
q̂∈Q̂

 π̃ (q̂)− w̃sφ+

τ
[
Ṽh
(
Q̂\ {q̂}

)
− Ṽh

(
Q̂
)]

+
∂Ṽh(Q̂)

∂q̂
∂q̂

∂wu
∂wu

∂t


−nw̃sG

(
x, θH)

+nx
[
EṼh

(
Q̂ ∪ {q̂ + λ ¯̂q}

)
− Ṽh

(
Q̂
)]

+ϕ
[
0− Ṽh

(
Q̂
)]

+ν
[
Ṽl
(
Q̂
)
− Ṽh

(
Q̂
)]




. (16)

The major difference from (15) is in the last line, where we incorporate the possibility of a tran-
sition to a low-type status at the rate ν. The remaining terms have the same interpretation as
(15) .

The next lemma shows that the value of each firm can be expressed as the sum of the franchise
values of each of their product lines, defined as the net present discounted value of profits from
a product line (as we will see these franchise values depend on the type of the firm).

Lemma 1 The value function of a k ∈ {h, l} type firm takes an additive form

Ṽk
(
Q̂
)
= ∑

q̂∈Q̂
Υk (q̂) ,

where Υk (q̂) is the franchise value of a product line of relative quality q̂ to a firm of type k, and Υk (q̂)
is nondecreasing and increasing when it is greater than zero. Moreover, there exist thresholds q̂k,min such
that a firm of type k shuts down a product line with relative quality q̂ < q̂k,min (and Υk (q̂) > 0 when
q̂ > q̂k,min).

Proof. See the Appendix A.
4Note that in writing this expression, we have made use of the fact that there is a continuum of products, and thus

even for a firm with a large number of product lines, the probability that it will innovate on one of its own products
is zero. Consequently, τ is both the average creative destruction rate and the average innovation rate in the economy.

10
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The next lemma characterizes the franchise value of a single product line as the solution to
a simple differential equation and the type of the firm with the leading-edge best technology in
this product line.

Lemma 2 The franchise values of a product line of relative productivity q̂ to low-type and high-type firms,
respectively, are given by the following differential equations

(r + τ + ϕ)Υl (q̂)− ∂Υl (q̂)
∂q̂

∂q̂
∂wu

∂wu

∂t
= Πq̂ε−1 − w̃sφ + Ωl if q̂ > q̂l,min (17)

Υl (q̂) = 0 otherwise

and

(r + τ + ϕ)Υh (q̂)− ∂Υh (q̂)
∂q̂

∂q̂
∂wu

∂wu

∂t
=

{
Πq̂ε−1 − w̃sφ + Ωh+

ν
[
Υl (q̂)− Υh (q̂)

] }
if q̂ > q̂h,min

Υh (q̂) = 0 otherwise

where Π ≡ 1
ε−1

(
ε−1

ε

)ε
, and

Ωk ≡ max
x≥0

{
−w̃sG

(
x, θk)+ xEΥk (q̂ + λ ¯̂q)

}
, for k ∈ {L, H}

is the R&D value of a k-type firm. Moreover, the R&D policy function of a k-type firm is

xk = θk
[
(1− γ)EΥk (q̂ + λ ¯̂q)

w̃s

] 1−γ
γ

for k ∈ {L, H} . (18)

Finally, q̂k,min is given by

q̂k,min =

(
w̃sφ−Ωk

Π

) 1
ε−1

for k ∈ {L, H} . (19)

Proof. This follows from the proof of Lemma 1.
The expressions in this lemma are intuitive. So long as this product line remains active, the

firm receives two returns: a flow of profits depending on q̂, Πq̂ε−1, and an R&D value, denoted
by Ωk for a firm of type k. The R&D value accounts for the fact that the firm can undertake R&D
building on the knowledge embedded in this active product line. While operating this product
line, the firm also incurs the fixed cost of operation w̃sφ. The differential equation also takes
into account that the relative productivity of this product line is declining proportionately at the
growth rate of the economy, g, reducing profits at the rate (ε− 1) g, and that this product line
is replaced by a higher productivity one at the rate τ and the firm exits for exogenous reasons
at the rate ϕ, making the effective discount rate r + τ + ϕ. If this product line is not replaced or
the firm does not exit by the time its relative productivity reaches q̂k,min (for a firm of type k),
at q̂k,min it will become “obsolete”, providing a boundary condition for the differential equation.

11
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Finally, for high-type firms there is an additional term incorporating the possibility of switching
to low-type.

The differential equations in Lemma 2 can be solved explicitly, and in the next proposition, we
provide the solution for low-type firms, which is simpler. We present the solution for high-type
firms in Appendix A.

Proposition 1 Let g and w̃s be the stationary equilibrium growth rate of the economy and the normalized
skilled wage rate, respectively. Moreover, let

zk (x) ≡ 1−
(

q̂k,min

q̂

)x

.

Then, the franchise value of a product line with relative productivity q̂ for a low-type firm is

Υl (q̂) =
Πq̂ε−1

r + τ + ϕ + (ε− 1) g
zl

(
r + τ + ϕ + (ε− 1) g

g

)
+

Ωl − w̃sφ

r + τ + ϕ
zl

(
r + τ + ϕ

g

)
,

where Π ≡ 1
ε−1

(
ε−1

ε

)ε.

Proof. See Appendix A.
Intuitively, the franchise value of a product line can be obtained in closed-form because it is

given by a combination of two forces: a proportional decline in the value of a product line as the
unskilled wage rate increases (and the relative quality of the product line declines), accounting
for the term (ε− 1)g, and effective discounting coming from the interest rate, creative destruction
and exogenous firm exit, accounting for the term r + τ + ϕ.

2.7 Labor Market and Stationary Equilibrium Distributions

The relative productivity distribution for type-k firms has a stationary equilibrium distribution
function, Fk (q̂) on [q̂k,min, ∞). Let the shares of product lines that belong to two different types of
firms and inactive product lines be denoted by Φh , Φl and Φnp, respectively. Naturally,

Φh + Φl + Φnp = 1.

Then the labor market-clearing condition for unskilled workers is

∫
N

l
(
q̂j
)

dj =
(

ε− 1
ε

)ε

(wu)−ε C
∫
N

qε−1
j dj = 1. (20)

Using (7), (11) and (12) , the previous labor market condition gives

Y = C = Q. (21)

The labor market-clearing for skilled workers, on the other hand, sets the total demand, made

12
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up of demand from entrants (first term) and demand from incumbents (second term), equal to
the total supply, LS:

G
(

xentry, θE
)
+ ∑

k∈{h,l}
Φk [hk (ws) + φ] = LS. (22)

To solve for the labor market-clearing condition, we need to characterize the measures of
active product lines Φk and the stationary equilibrium productivity distributions conditional on
firm type k. These detailed derivations are provided in Lemma 3 in Appendix A.

2.8 Aggregate Growth

Equation (21) shows that aggregate output is equal to the productivity index, Q. Thus the
growth rate of aggregate output is given by g = Q̇/Q. The following proposition characterizes
the growth rate.

Proposition 2 The growth rate of the economy is equal to

g = λτ. (23)

Proof. See Appendix A.
The intuition for the growth rate in (23) is as in standard quality ladder models, linking

growth to the frequency and size of innovations.
Finally we summarize the equilibrium of this economy.

Definition 1 (Stationary Equilibrium) A stationary equilibrium of this economy is a tuple

{yj, pj, lj, Ṽl , Ṽh, q̂h,min, q̂l,min, xh, xl , xentry, hh, hl , hentry, Φh, Φl , Φnp, Fl (q̂) , Fh (q̂) , ws, wu, g, r}

such that [i] yj and pj maximize profits as in (11) and the labor demand lj satisfies (5); [ii] Ṽl and Ṽh

are given by the low-type and high-type value functions in (15) and (16); [iii] (q̂h,min, q̂l,min) satisfy
the threshold rule in (19); [iv] xh and xl are given by the R&D policy functions in (18) and xentry

solves the entrants’ problem in (14); [v] the skilled worker demands hh, hl and hentry satisfy (8) and
(13); [vi] the stationary equilibrium productivity distributions

(
F̃l (q̂) , F̃h (q̂)

)
and the product line shares(

Φh, Φl , Φnp) satisfy Lemma 3; [vii] the growth rate is given by (23); [ viii] the interest rate satisfies the
Euler equation (4); and [ix] ws and wu are consistent with labor market-clearing for unskilled and skilled
workers as given by (20) and (22) .

Though the stationary equilibrium in this model is a relatively complex object, the values for
different types of firms can be computed in closed form given the equilibrium wage as shown in
Proposition 1. There are no closed-form solutions for the equilibrium wage rate and stationary
distributions, but these can be computed numerically. We will also use this computation for the
simulated method of moments estimation as outlined in Section 3.2.
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2.9 Welfare and Distortions

Recall that output and consumption are equal to the productivity index Q, so that the initial level
of consumption satisfies C0 = Q0, where

Q0 =

(∫
N0

qε−1
j0 dj

) 1
ε−1

.

We normalize the initial productivity level of all active product lines to 1, i.e., qj0 = 1 for all
j ∈ N0, which implies, C0 = Q0 = Φ

1
ε−1 , where Φ0 = Φh

0 + Φl
0 is the endogenous measure of

active product lines at date t = 0. Then welfare can be obtained as

U0 (C0, g) =
∫ ∞

0
exp (−ρt)

C1−ϑ
t − 1
1− ϑ

dt =
1

1− ϑ

 Φ
1−ϑ
ε−1
0

ρ− (1− ϑ) g
− 1

ρ

 , (24)

where the first equality simply repeats the definition of discounted utility from (1), the second
equality imposes the assumption that we are in stationary equilibrium (thus implying that we are
not evaluating welfare implications of transitioning from one stationary equilibrium to another),

and solves the integral using Ct = C0egt and C0 = Φ
1

ε−1
0 .

In comparing welfare in two economies, say with subsidy policies s1 and s2, and resulting
growth rates g (s1) and g (s2) and initial consumption levels C0 (s1) and C0 (s2), we compute
consumption-equivalent changes in welfare by considering the fraction of initial consumption ξ

that will ensure the same discounted utility with the new growth rate as with the initial allocation.
More formally, the consumption-equivalent change ξ is given such that

U0 (ξC0 (s2) , g (s2)) = U0 (C0 (s1) , g (s1)) .

It is also useful at this point to note that the decentralized equilibrium is typically inefficient.
As in models of endogenous technological change, there is insufficient R&D because firms do
not appropriate the full value of new innovations (see, e.g., Acemoglu, 2008, for a discussion).
In our model, this lack of appropriation results because future innovations build on the current
knowledge stock, as captured by equation (10), and thus current innovations create a positive
spillover to future innovators. The resulting underinvestment takes the form of too little em-
ployment of skilled workers in R&D, and thus too much employment in operations (covering the
fixed costs of active firms).5 However, this underinvestment does not apply to the two types of

5Counteracting this lack of full appropriation are two other effects. First, as in other quality ladder models such as
Aghion and Howitt (1992), there is a business stealing effect, encouraging firms to undertake R&D in order to capture
monopoly profits. Second, the love-for-variety resulting from the imperfect substitution of different varieties means
that consumers benefit from having more active products. Nevertheless, these two effects are typically dominated by
the lack of full appropriation, which leads to underinvestment in R&D.

We should also note that even though there are monopoly markups in this model, these do not directly distort the
allocation, since there is no elastic supply of production inputs.
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firms equally. The social value of one more active product is greater in the hands of a high-type
firm, because such a firm is more productive in R&D, and thus is more likely to undertake a
socially valuable (and under-provided) innovation. Consequently, the social planner would like
to allocate more skilled labor to R&D, and to be able to do this, she would need to free up this
labor from operations, especially from the operations of low-type firms. We will see below how
different policies achieve this objective.

3 Estimation and Quantitative Analysis

To perform the policy experiments described in the Introduction, we first estimate the parame-
ters of our model using simulated method of moments (SMM). In this section, we describe our
data set and estimation procedures, and the next two sections provide our results and policy
counterfactual experiments.

3.1 Data

We employ the Longitudinal Business Database (LBD), the Census of Manufacturers (CMF), the
NSF Survey of Industrial Research and Development (RAD), and the NBER Patent Database
(PAT). The LBD and CMF are the backbone for our study. The LBD is a business registry that
contains annual employment levels for every private-sector establishment in the United States
with payroll from 1976 onward. The CMF is conducted every five years and provides detailed
records on manufacturing plant and firm operations (e.g., output). Sourced from US tax records
and Census Bureau surveys, these micro-records document the universe of establishments and
firms, enabling us to study reallocation, entry/exit, and related firm dynamics.

The Survey of Industrial Research and Development (RAD) is the US government’s primary
instrument for surveying the R&D expenditures and innovative efforts of US firms. This is an
annual or biannual survey conducted jointly by the Census Bureau and NSF. The survey includes
with certainty all public and private firms, as well as foreign-owned firms, undertaking over one
million dollars of R&D within the US. The survey frame also subsamples firms conducting less
than the certainty expenditure threshold. The certainty threshold was raised after 1996 to five
million dollars of R&D for future years (before subsequently being lowered after our sample
frame). RAD surveys are linked to the LBD’s and CMF’s operating data through Census Bureau
identifiers. These micro-records begin in 1972 and provide the most detailed statistics available
on firm-level R&D efforts. In 1997, 3,741 firms reported positive R&D expenditures that sum to
$158 billion (Foster and Grim (2010) provide additional details on the data). To complement the
RAD, we also match patent data into the Census Bureau data. We employ the individual records
of all patents granted by the United States Patent and Trademark Office (USPTO) from January
1975 to May 2009. Each patent record provides information about the invention and the inventors
submitting the application. Hall et al. (2001) provide extensive details about these data, and
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Griliches (1990) surveys the use of patents as economic indicators of technology advancement.
We only employ patents (i) filed by inventors living in the US at the time of the patent application;
and (ii) assigned to industrial firms. In 1997, this group comprised about 77 thousand patents.
We match these patent data to the LBD using firm name and location matching algorithms.6

Our main sample focuses on “continuously-innovative” firms (though we later consider the
broader manufacturing sample). We define a firm as “innovative” if it is conducting R&D or
patenting within the US. Our operating data come from the years 1987, 1992, and 1997 when
the CMF is conducted, and the data are specific to those years. We develop our measures of
innovation using five-year windows surrounding these CMF years (e.g., 1985-1989 for the 1987
CMF). These local averages assist with RAD’s biannual reporting when it occurs, and they ensure
that we include two RAD surveys with the lower certainty threshold for the 1997 CMF group.
The local averages also provide a more consistent measure of patent filings, which can be lumpy
for firms with few patents. We describe the use of patents in further detail shortly.

The “continuous” part of our sample selection is important and is structured as follows. We
only include a firm in our sample if it conducts R&D or patents during the five-year window
surrounding each CMF year in which it is operating (i.e., has positive employment and sales
in the CMF). Thus, a firm that is in operation in 1987 and 1992 is included in our sample if it
is also conducting R&D or patents during 1985-1989 and 1990-1994. Similarly, a firm that is in
operation in 1992 and 1997 is included in our sample if it is also conducting R&D or patents
during 1990-1994 and 1995-1999. The firm does not need to conduct R&D or patent in every year
of the five-year window, but must do one of the two activities at least once.

This selection process has several features to point out. First, the entrants in our sample
(i.e., firms first appearing in the 1992 or 1997 CMF) will be innovative throughout their lifecycle
until the 1995-1999 period. Second, we do not consider switches into innovation among already
existing firms. For example, we exclude firms that are present in the 1987 and 1992 CMF, patent
or conduct R&D in the 1990-1994 period, but do not patent or conduct R&D during 1985-1989
(the probability that an existing, non-innovative firm commences R&D or patenting over the
ensuing five years, conditional on survival, is only about 1%). Third, and on a similar note, we
do not include in our sample firms that cease to be innovative but continue in operation. Exits in
our economy are thus defined over firms that patent or conduct R&D until they cease to operate.

Finally, our sample does not condition on innovative activity before 1985-1989. Thus, the
incumbents in our sample who were in operation prior to the 1987 CMF may have had some
point in their past when they did not conduct R&D or patent. We only require that incumbents
be innovative in every period when they are in operation during our sample. This choice allows
us to construct a full distribution of innovative firms in the economy, which is important when
considering the reallocation of resources for innovation. Of course, this choice is also partly due
to necessity as we do not observe the full history of older incumbents. We discuss further below

6Akcigit and Kerr (2017) discuss the R&D and patent data in greater detail. The patent matching builds upon the
prior work of Balasubramanian and Sivadasan (2011) and Kerr and Fu (2008). See also Kogan et al. (2017).
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the aggregate implications for reallocation and growth measurement of this design.7

We now describe the use of the patenting data. In accordance with our model, the moments
below focus on R&D intensities (i.e., inputs into the innovation production function) as well as
employment, sales and exit dynamics. We face the challenge that the RAD subsamples firms
conducting less than one million dollars in R&D. By contrast, the patent data are universally
observed. To provide a more complete distribution, we use patents to impute R&D values for
firms that are less than the certainty threshold and not sub-sampled. Thus, our moments combine
the R&D and patent data into a single measure that accords with the model. As the R&D
expenditures in these sub-sampled cases are very low (by definition), this imputation choice
versus treating unsurveyed R&D expenditures as zero expenditures conditional on patenting is
not very important.

Overall, our compiled dataset includes innovative manufacturing firms from the years 1987,
1992, and 1997 when the CMF is conducted. A record in our dataset is a firm-year observation
that aggregates over the firm’s manufacturing establishments. We have 17,055 observations from
9,835 firms. By abstracting from the extensive margin of entry or exit into innovation for con-
tinuing firms, all of our moments are consistently defined and well measured in the data. At
the same time, our selection procedures provide as complete a distribution of innovative firms
as possible, which is important when considering reallocation. Our sample accounts for 98%
of industrial R&D conducted during the period. When compared to a single cross-section of
data, our sample is slightly more skewed towards larger firms. Specifically, in the average year
during our sample period, 22% of the firms conducting R&D or patenting have more than 500
employees. In our sample, 32% of observations have more than 500 employees.

Our main sample thus focuses on the reallocation of resources for innovation and thus ex-
cludes firms that do not report R&D or patents, which we define as “non-innovative firms”. It is
important to place our sample within the overall distribution of economic activity. Our sample
of continuously-innovative firms accounts for 2% of firms, 50% of employment, and 64% of sales
within manufacturing. The greater share of employment and sales activity than firm counts is
because the great majority of small firms are non-innovative. In a similar manner and due to the
link of innovation to growth, our sample accounts for a substantial portion of reallocation occur-
ring. Many small firms are not oriented for growth (e.g., Haltiwanger et al., 2013) and thus play
a limited role in reallocation. As one statistic, our sample includes 58% and 65% of employment
and sales reallocation, respectively, among continuing manufacturing firms between 1987 and
1997. As a second statistic, among firms that were either very small (fewer than 20 employees)
or did not exist in 1987, we capture 94% of those that then grew to 10,000+ employees by 1997.
We likewise capture 80% of small firms or new entrants that grow to one billion dollars in sales
by 1997.

7Note that it would have been impossible to build a consistent sample for “ever innovative” firms rather than for
continuously innovative firms. To see why, consider keeping all of the past records for firms that conduct R&D in
1997. In both 1987 and 1992, this approach would induce a mismeasurement of exit propensities and growth dynamics
because a portion of the sample will include firms conditioned on survival until 1997.
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Our central moments are firm entry/exit rates, the age and size distribution of firms, transi-
tions across the firm size distribution over time, firm growth rates by age and size, firm innova-
tion intensity by age and size, and entrants’ share of employment in the economy. Large firms
are defined to be those with more than 200 employees, which is roughly the median firm size in
our sample. The age distribution is similarly separated into whether a firm is 0-9 years or 10+
years old. We calculate firm age as the count of years since the firm was first observed in the LBD
with positive employment, and we later consider robustness checks that exclude inorganic entry
and exit (e.g., spinouts and acquisitions). We define moments related to entry/exit, growth, and
age-size distribution transitions as changes between CMF years expressed in per annum terms.8

Shipments are deflated using the 2009 NBER Productivity Database.9

3.2 Computational Algorithm

The model can be solved computationally as a fixed point of the following vector of six aggregate
equilibrium variables {

w̃s, Φh, Φl , ¯̂q, E[Υh(q̂ + λ ¯̂q)], E[Υl(q̂ + λ ¯̂q)]
}

. (25)

Our characterization above shows that equilibrium innovation decisions can be determined given
these aggregate variables. While the skilled wage w̃s directly gives the cost of innovation, the
rest of the variables in (25) determine the expected return to innovation. We can solve for
the stationary equilibrium by first posing a conjecture for (25), then solving for the individual
innovation decisions and then verifying the initial conjecture. Specifically, using the guess for
these variables:

1. we compute the innovation rates (xh, xl , xentry), R&D values (Ωh, Ωl), and growth rate g;

2. using the innovation intensities, we calculate the stationary equilibrium distribution over
active/inactive product lines and over values of q̂ by using Lemma 3;

3. we check the labor market-clearing conditions using the innovation intensities and the
above distributions and compute the equilibrium wage rates from (20) and (22), updating w̃s;

4. we update the values for ¯̂q, E[Υh(q̂ + λ ¯̂q)] and E[Υl(q̂ + λ ¯̂q)] by using the productivity
distribution and Lemma 2.

This procedure gives us (25) as a fixed point and also generates the stationary equilibrium dis-
tributions of relative productivities. Note that all these variables are determined at the product-
line level. We compute firm-level moments by simulating the evolution of a panel of 217 firms
until they reach approximate stationary equilibrium after 10, 000 periods. Each period corre-

8We measure growth rates relative to base years over the five-year period to allow a direct decomposition to per
annum terms. These growth rates are winsorized at their 0.5% and 99.5% values. The patterns are similar when
expressing growth relative to the average of base and end years. We then calculate geometric averages over these
firm-level growth rates. We similarly winsorize R&D intensities to be conservative.

9Though prices in industries related to computers and semiconductors behave differently from those in other parts
of manufacturing, we find very similar moments when excluding these industries from our moment calculations.
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sponds to 0.02 of a year, and hence the total simulation time comes out to 200 years. At each
iteration, firms gain and lose products according to the flow probabilities specified in the model.

3.3 Estimation

We set the discount rate equal to ρ = 2%, which roughly corresponds to an annual discount
factor of 97%, and the inverse of the intertemporal elasticity of substitution to ϑ = 2. We choose
LS = 0.166 to match the share of managers, scientists and engineers in the workforce in 1990,
which is 14.2% (= 0.166/1.166). Following Broda and Weinstein (2006), we take the elasticity of
substitution between different products to be ε = 2.9.

Table 1: Calibrated Parameters

# Parameter Description Value

1. ε CES 2.900

2. LS Measure of high-skilled workers 0.166

3. γ Innovation elasticity 0.500

4. ϑ Inverse of the intertemporal elasticity of substitution 2.000

5. ρ Discount rate 0.020

Following the microeconometric innovation literature, we choose the elasticity of successful
innovation with respect to R&D γ as 0.5. In particular, using count data models, Blundell et al.
(2002) report an elasticity of γ = 0.5, while Hall and Ziedonis (2001) find similar results in a study
of the semiconductor industry. Estimates exploiting variations in tax credits also yield similar
elasticities. Both studies exploiting over-time variation in the US tax code (e.g., Hall, 1993) and
those relying on cross-state variation in R&D tax credits (e.g., Bloom et al., 2002; Wilson, 2009)
typically estimate a tax elasticity of R&D around unity. These tax elasticities are equivalent to
the R&D elasticity with respect to the scientist wage, ws, since this is the only cost of R&D in our
model. Because %∆R&D

%∆ws = γ−1
γ , a unit tax elasticity also implies γ = 0.5 in our setup.10

The remaining 8 parameters, which are listed in Table 2, are estimated with SMM.11 We
compute the model-implied moments from the simulation strategy described above and compare
them to the data-generated moments to minimize

min
18

∑
i=1

|model (i)− data (i)|
1
2 |model (i)|+ 1

2 |data (i)|
,

where we index each moment by i. SMM iteratively searches repeatedly across sets of parameter
values in the model until the model’s moments are as close as possible to the empirical moments.

Our SMM procedure targets the 18 moments outlined in Table 3. These moments center on

10To see this, substitute the equilibrium innovation choice (18) into R&D cost function (9) to obtain R&D =

nθk (ws)
γ−1

γ

[
(1− γ)EΥk (q̂ + λ ¯̂q)

] 1
γ .

11See McFadden (1989) and Pakes and Pollard (1989) for the statistical properties of the SMM estimator.
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firm entry (measured through employment shares), exit rates, size transition rates, employment
and sales growth rates, and innovation intensities, selected in each case because of their economic
importance for the mechanisms of the model. We have a single aggregate moment, the growth
of output per worker in our sample of firms, and we give this moment 5 times the weight of the
micro-moments to ensure that we are in the ballpark of matching the aggregate growth.

We compute the standard errors of the data moments by bootstrap. Specifically, we draw
samples of equal size to our original sample from either the Census Bureau data or from the
Census of Populations. We use 1000 iterations in each case. For the firm data, we stratify the
sample draws by firm age, size, year and industry. The sample draws are conducted at the
firm-year level and retain the firm-specific information like whether the firm is an entrant in
that year and its forward growth rates for sales and employment. We recalculate our aggregate
moments like entrant shares of employment and overall growth rate for each bootstrap sample.
The resulting standard errors are quite similar across a range of techniques, such as removing the
firm selection stratification or sampling whole firm histories (i.e., retaining all years of a sampled
firm).

Standard errors of the parameter estimates are also computed by bootstrap. We estimate the
model parameters 1000 times by targeting the empirical moments that are randomly generated
based on the bootstrapped distribution of the data moments, and then derive their standard
errors from their distribution across these 1000 estimations.12

4 Results

In this section, we present our estimation results and evaluate the fit of our model to various
targeted and non-targeted moments in the data.

4.1 Parameter Estimates

Table 2 reports the parameter estimates from our SMM procedure and the bootstrapped standard
errors, which are uniformly very small reflecting the size of our micro data.

The estimate of the fixed cost of operation indicates that the ratio of fixed workers to variable
production workers is around 13.3%. Our estimates also show that high-type firms are about
26% more innovative than low-type firms (θH/θL ≈ 1.26). Entrants have a 93% chance of being
a high-type firm (α = 0.93), and high-type firms face an annual 21% probability of transitioning
to low-type (ν = 0.206). This pattern implies a very high degree of negative selection—firms are
much more likely to be high-type when young than later in their life cycle. The parameter λ

is estimated as 0.132, which implies that an innovation leads to 13.2% increase in quality for an
average product line. We also estimate a small exogenous destruction rate, ϕ = 0.037. Recall,

12Due to disclosure restrictions, we cannot use the bootstrapped distribution of the data moments directly. Instead,
we generate the data moments from a multivariate normal distribution with mean and covariance matrix that are
calculated from bootstrapped data moments.
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Table 2: Parameter Estimates

# Parameter Description Value St Errors
1. φ Fixed cost of operation 0.216 (0.012)
2. θH Innovative capacity of high-type firms 1.751 (0.020)
3. θL Innovative capacity of low-type firms 1.391 (0.017)
4. θE Innovative capacity of entrants 0.024 (0.001)
5. α Probability of being high-type entrant 0.926 (0.023)
6. ν Transition rate from high-type to low-type 0.206 (0.005)
7. λ Innovation step size 0.132 (0.010)
8. ϕ Exogenous destruction rate 0.037 (0.001)

however, that the overall rate of firm exit will be higher than this because of endogenous exit due
to creative destruction and obsolescence, as we show below.

4.2 Goodness of Fit

Table 3 reports the empirical moments that we target (together with their standard errors) and
the predicted values from our model. The solid bars in Figures 1(a)-(e) for the model-implied
moments provides a graphical depiction.

Table 3: Model and Data Moments

# Moments Model Data St Error # Moments Model Data St Error

1. Firm exit (small-young) 0.097 0.107 (0.002) 10. Sales growth (small-young) 0.101 0.107 (0.006)

2. Firm exit (small-old) 0.092 0.077 (0.002) 11. Sales growth (small-old) 0.040 0.024 (0.004)

3. Firm exit (large-old) 0.036 0.036 (0.001) 12. Sales growth (large-old) -0.005 -0.003 (0.002)

4. Trans. from large to small 0.021 0.010 (0.001) 13. R&D to sales (small-young) 0.086 0.064 (0.004)

5. Trans. from small to large 0.038 0.014 (0.001) 14. R&D to sales (small-old) 0.066 0.059 (0.004)

6. Prob. of small (cond on entry) 0.848 0.753 (0.005) 15. R&D to sales (large-old) 0.059 0.037 (0.001)

7. Emp. growth (small-young) 0.101 0.106 (0.004) 16. 5-year entrant share 0.336 0.393 (0.003)

8. Emp. growth (small-old) 0.040 0.035 (0.003) 17. Fixed cost-R&D labor ratio 4.175 5.035 (0.015)

9. Emp. growth (large-old) -0.005 -0.005 (0.002) 18. Aggregate growth 0.023 0.022 (0.007)

Both Table 3 and Figure 1 show a relatively good fit between our model-implied moments and
data. Our model replicates salient characteristics of data, including lower exit rates for larger and
older firms, similar transition rates across firm sizes and entry/exit, quite similar growth rates
for sales and employment by firm size and age bins, and similar R&D/sales intensities by type
of firm. The last three economy-wide moments are also well aligned. On the whole, despite the
overidentification of matching 18 moments with 8 parameters, the fit is quite good.13

13We do not report tests of the overidentifying restrictions for the usual reason that, given our sample size, stan-
dard errors are tiny, and even the most minor deviation from these 18 moments would constitute a rejection of the
overidentifying restrictions. At the bottom of this, of course, is the fact that standard errors are computed without
allowing for “model misspecification”.
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Figure 1: Data and Simulated Moments

Figure 17: Empirical and Simulated Moments
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Table 4 shows the important equilibrium implications in our baseline economy (all numbers
in this and subsequent tables, except welfare, are in percentage points). These moments will
be used extensively for comparison in our policy analysis in the next section. The equilibrium
growth rate is g = 2.26%. This is driven by entry as well as R&D investments by high- and low-
type firms. The table shows that the per product innovation rate of high-type firms is about 50%
greater than that of low-type firms, which reflects their greater innovative capacity (xh = 38.1%
vs. xl = 25.9%). As explained above, the distribution of product lines across high- and low-
type firms is determined by different rates of innovation for these two types of firms, different
obsolescence rates, and negative selection due to transitions to low-type. Our model finds 6.3%
of product lines are held by high-type firms (Φh), 55% by low-types firms (Φl), and 38.7% are
inactive. Together with the 0.51% flow rate of innovations by entrants, these innovation efforts
lead to the employment of about 19.9% of all skilled workers in R&D (LR&D/LS) and an average
creative destruction rate of τ = 17.2%. We also normalize baseline welfare to 100 for ease of
comparison in our subsequent policy analysis.

Table 4: Baseline Economy

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

0.51 25.90 38.13 55.04 6.28 147.26 130.33 19.86 17.16 2.26 100

Figure 2 shows the productivity distribution across product lines among high- and low-type
firms. An important point to note is that the threshold productivity for high-type firms is lower
because of their greater R&D value of operating a product line (q̂h,min = 1.30 vs. q̂l,min = 1.47).

Figure 2: Productivity Distribution and Selection

Figure 18: Selection through Obsolescence
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4.3 Non-Targeted Moments

We assess the performance of our model by comparing its implications for a range of non-
targeted moments, which capture important economic quantities, but have played no role in
our estimation. This strategy thus provides an out-of-sample test of the structure imposed by
our model and the values of the parameters we have estimated. Reassuringly, we will see that
our model performs fairly well, raising our confidence in the model’s ability to provide a good
approximation to data and the conclusions that will follow from the policy experiments.

First, Panel A of Table 5 considers persistence in growth rates among firms that survive over
the whole sample period. Table 4 shows that about 10% of active product lines are operated by
high-type firms in our model, and so we look at persistence in the second period of differences
between the top 10% of firms and the remaining 90% in terms of first-period employment growth.
For both employment growth and the R&D-to-sales ratio, the model generates patterns consistent
with the data, though the differences in the data are somewhat larger in our model. For example,
the future employment growth of bottom 90% and top 10% of firms in the data are 0.011 and
0.016, respectively, while they are 0.011 and 0.037 in our model.

Table 5: Non-targeted Moments

Moments Model Data Mean St Error
Panel A

Employment growth of bottom 90% 0.011 0.011 (0.004)
Employment growth of top 10% 0.016 0.037 (0.016)
R&D to sales of bottom 90% 0.061 0.038 (0.004)
R&D to sales of top 10% 0.071 0.052 (0.018)

Panel B
R&D per employee ratio (high to low) 1.737 1.461 (n/a)
Patent per employee (high to low) 1.578 1.838 (n/a)

Panel C
Productivity distribution - 75/25: small/young 1.328 1.344 (0.006)
Productivity distribution - 75/25: small/old 1.231 1.311 (0.006)
Productivity distribution - 75/25: large/young 1.150 1.388 (0.017)
Productivity distribution - 75/25: large/old 1.087 1.294 (0.004)

Panel D
Add a product (or more) 2.9% 8.0% (0.003)
Drop a product (or more) 2.3% 8.3% (0.003)
Do both 91.7% 76.8% (0.005)
Do neither 3.1% 7.0% (0.003)
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Panel B uses the recent Management and Organizational Practices Survey (MOPS) conducted
by the U.S. Census Bureau. Bloom et al. (2017) summarize some initial findings from MOPS 2010
survey, which we compare with the implications of our model. These authors group firms into
deciles of management scores. Since high-type firms contain 10% of the active product lines in
our simulations, we compare the innovation performances our high-type firms to the top-decile
of the Bloom et al. (2017) sample. The ratio of the R&D per employee of the top 10% of firms to
the bottom 90% is 1.5 in the data, and our model predicts a similar rate, 1.7. Likewise, the patent
per employee ratio is 1.8 in the data versus 1.6 in our model. All in all, the model performs fairly
well with respect to these non-targeted comparisons, which is reassuring.

Panel C presents the ratio of productivities at the 75th and 25th percentiles by size and age
group. In the data, these are calculated with 5% fuzzy bands around each percentile point to
allow for disclosure. Both the model and data exhibit similar productivity distributions within
each size and age category, even though these distributions were not targeted in our estimation.

Panel D reports the fractions of firms that gained at least one product without losing any in
a year, lost at least one product without gaining any, both gained and lost at least one product
and neither gained nor lost any product. The model and data exhibit similar patterns for these
numbers as well.

Finally we compare the product line distribution that is generated from our model to its
empirical counterpart in Figure 3.

Figure 3: Product Line Distribution
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product distribution in the data. In addition, we plot 5-digit product distribution which is not
too different from our model either. Panel D of Table 5 also shows that the unweighted rate at
which firms add and drop products over five year periods in the model and data are reason-
ably aligned and in accordance with Bernard et al. (2010). This comparability for product count
distributions and firm-level adjustments is encouraging since information on these product line
distributions are not used in our estimation.

We next follow Foster et al. (2001), Bartelsman and Doms (2000), and Lentz and Mortensen
(2008) and perform a simple growth decomposition according to the following identity,

∆Θt = ∑
i∈Ct

sit−1∆Ŷit︸ ︷︷ ︸
within

+ ∑
i∈Ct

(
Ŷit−1 −Θt−1

)
∆sit︸ ︷︷ ︸

between

+ ∑
i∈Ct

∆sit∆Ŷit︸ ︷︷ ︸
cross

+ ∑
i∈Et

sit
(
Ŷit −Θt−1

)
︸ ︷︷ ︸

entry

− ∑
i∈Xt

sit−1
(
Ŷit−1 −Θt−1

)
︸ ︷︷ ︸

exit

,

where Yit is value added for firm i at time t, Nit is the number of employees of the firm, and Ct,
Et and Xt, respectively, denote the set of continuing, entering and exiting firms. In addition, we
have Θt = ∑i sitŶit, Ŷit = Yit/Nit, and sit = Nit/ ∑i Nit. We report each of the five components in
this decomposition both in the data and from our model in Table 6.

Table 6: Decomposition

Model Data St Error

Within Share 0.607 0.999 (0.176)

Between Share -0.024 -0.049 (0.057)

Cross Share 0.239 -0.305 (0.176)

Entry Share 0.175 0.192 (0.062)

Exit Share 0.003 0.164 (0.033)

Net Entry Share 0.178 0.356 (0.074)

10-year Cumulative Growth 0.254 0.261 (0.051)

The model and data both show the largest component of growth coming from the within-
firm labor productivity growth term, and the signs and magnitudes mostly line up over the
components too. The one exception is in the cross term, where the model finds growing share of
employment connected to growing labor productivity, whereas the data finds a negative correla-
tion. This discrepancy is not a very robust feature, however; the cross term becomes positive, for
example, when we look at the 1987-1992 subsample.

5 Policy Experiments and Efficiency

In this section, we perform counterfactual policy analysis to gain insight on both the implications
of different types of industrial policies and the form of optimal policy in this economy. Before
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turning to our analysis of optimal policy, we first show how incumbent R&D subsidies, fixed cost
subsidies and entry subsidies impact the equilibrium.14

5.1 Incumbent R&D Subsidy

The results from subsidizing the R&D of incumbents are shown in Table 7. As in other policy
experiments, we choose the subsidy rate to be equivalent to 1% of GDP, and also show the key
equilibrium objects from our baseline economy (from Table 4) in Panel A for comparison.

Table 7: Incumbent R&D Subsidy

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.51 25.90 38.13 55.04 6.28 147.26 130.33 19.86 17.16 2.26 100.00

Panel B. 1% of GDP (si = 14%)

0.46 27.39 40.73 53.01 6.85 150.97 133.78 21.75 17.78 2.34 100.63

A subsidy equivalent to 1% of GDP translates into a 14% subsidy on R&D spending of contin-
uing firms. Unsurprisingly, this leads to higher R&D by these incumbents. Low-type incumbents
increase their innovation rate from 25.9% to 27.4%, while high-type incumbents go from 38.1%
to 40.7%—both of these are about 6% higher than the baseline. However, the overall impact on
innovation and growth is much less than this direct effect. The average rate of creative destruc-
tion, τ, increases only by 3%, for instance. This is for two reasons. First, at a given skilled wage,
greater incumbent R&D would increase creative destruction and thus discourage entry. Second,
and more important, the greater demand for skilled workers from incumbent R&D increases the
skilled wage. This reduces R&D by entrants from 0.51% to 0.46%, and also modestly reduces the
amount of skilled labor allocated to operations and thus raises the ratio of skilled labor employed
in R&D from 19.9% to 21.7%. The overall result is a modest increase in growth 2.26% to 2.34%,
and aggregate welfare goes up by 0.6% (in consumption equivalent terms).

5.2 Subsidy to Operating Costs

We next consider an industrial policy subsidizing the continued operation of incumbents by
subsidizing their fixed costs of operations wsφ, which approximates policies that support large
firms that are in economic trouble.15 A subsidy equivalent to 1% of GDP in this case corresponds

14To focus on the key economic implications of our model in the clearest fashion, we abstract from the costs of raising
taxes. In any case, we will see below that optimal policies typically involve taxes on the operation of continuing firms,
thus raising rather than reducing revenues to tax authorities.

15Or equivalently, their exit is taxed or some combination thereof. We consider subsidies or taxes on the fixed cost
of operations rather than on all costs or on accounting profits, because these alternative policies would also affect
markups, partly confounding the main effect we are interested in. All the same, such subsidies or taxes have broadly
similar impacts.
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to a 4% subsidy on the fixed costs of operation of continuing firms.
Panel B of Table 8 shows that this subsidy discourages exit, increasing the fraction of active

product lines (Panel A again gives the baseline for comparison). It also leads to modest declines
in the innovation rates of entrants, low-type incumbents and high-type incumbents. In particular,
because now more firms are operating, the demand for skilled labor increases, the skill wage goes
up and fewer skilled workers perform R&D (the fraction of skilled workers allocated to R&D goes
down modestly, from 19.9% to 19.4%). Because low-type firms are overrepresented among those
at the margin of obsolescence (recall Figure 2), this policy also induces further negative selection:
the share of product lines operated by low-type firms in the economy increases from 55.0% to
55.6%, while the share operated by high-type firms declines from 6.3% to 6.1%. As a consequence
of all of these negative effects, the growth rate of the economy declines from 2.26% to 2.24%, and
aggregate welfare declines by 0.2%.

Table 8: Operation Subsidy

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.51 25.90 38.13 55.04 6.28 147.26 130.33 19.86 17.16 2.26 100.00

Panel B. 1% of GDP (so = 4%)

0.50 25.57 37.58 55.63 6.05 146.27 129.30 19.39 17.00 2.24 99.80

In sum, a subsidy to the operating costs of incumbents reduces growth and welfare because
it causes a negative selection effect, increasing the share of product lines controlled by low-
type firms, as low-type firms tend to benefit more from this subsidy which is directed to low-
productivity product lines.

5.3 Entry Subsidy

Finally, for comparison, we also consider the implications of an entry subsidy equivalent to 1%
of GDP. The results are reported in Table 9.

Table 9: Entry Subsidy

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.51 25.90 38.13 55.04 6.28 147.26 130.33 19.86 17.16 2.26 100.00

Panel B. 1% of GDP (se = 65%)

1.35 24.59 35.08 49.50 10.16 151.30 138.46 22.02 17.09 2.25 98.36

The direct effect of the subsidy is to increase entry. In Panel B we see that the innovation effort
of entrants increases from 0.51% to 1.35%, but now there is a decline in the innovation rates of
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continuing firms. The total effect is a modest reduction in the average creative destruction rate
of the economy from 17.2% to 17.1%. This in turn leads to slightly lower growth and aggregate
welfare.

5.4 Social Planner

The results of the previous subsection show only small effects from subsidies to incumbent R&D,
entrant R&D and operations. We will see now, however, that the social planner can significantly
increase welfare. Since we are not interested in monopoly distortions per se, we restrict the social
planner to the same production and pricing decisions as the equilibrium, and only allow her
to control the entry, exit and R&D margins of different firms. It is straightforward to see that
the social planner will choose the same per product R&D for all high-type firms and also the
same R&D for all low-type product lines. Then, we can represent the problem of the planner
as choosing {q̂h,min, q̂l,min, xh, xl} to maximize representative household welfare (24) subject to
the skilled labor market-clearing condition (22). Table 10 summarizes the allocation implied by
social planner’s choices.

Table 10: Social Planner

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.51 25.90 38.13 55.04 6.28 147.26 130.33 19.86 17.16 2.26 100.00

Panel B. Social Planner

0.60 25.42 45.34 5.64 44.70 240.42 27.80 34.21 22.30 2.94 104.47

The social planner improves growth and welfare quite significantly. Growth increases from
2.26% to 2.94%. Welfare increases by 4.47%, underscoring that the equilibrium was far from opti-
mal in the baseline model, and the limited consequences of the subsidy policies considered so far
stemmed from the fact that each was by itself ineffective in triggering a reallocation of resources
towards R&D by high-type firms. How the social planner is achieving such a reallocation can
also be seen from Table 10, which illustrates the form of the optimal allocation. Most notably, the
exit threshold for low-type firms, q̂l,min, increases substantially (from 1.47 to 2.40) whereas the
threshold for high-type firms, q̂h,min, actually decreases (from 1.30 to 0.28). The social planner
also differentially increases R&D by firm type: high-type incumbents increase from xh = 0.38
to 0.45, while R&D for low-type firms remains essentially unchanged (there is also a modest
increase in the entry rate). The combined effect of the large increase in the exit threshold for
low-type firms and increased R&D for high-type firms is a significant change in the selection
effect—the ratio of high- to low-type firms (Φh/Φl) increases from 0.11 to 7.93.

Table 11 further dissects how the social planner is improving welfare relative to the baseline
economy. Row 3 shows that if the social planner can only change the entry and innovation rates
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(keeping the exit thresholds at their baseline equilibrium values, q̂l,min and q̂h,min), there is es-
sentially no effect on welfare. On the other hand, when she only controls the exit thresholds
(keeping the innovation and entry rates at their baseline equilibrium values), she achieves most
of the selection gains and can increase welfare by 1.58% in consumption-equivalent terms. Nat-
urally, when the two margins are combined, she can achieve much greater growth and welfare
gains as we have seen in Table 10.

Table 11: Restricted Social Planner

xentry xl xh Φl Φh q̂l,min q̂h,min g Wel

1. Baseline 0.51 25.90 38.13 55.04 6.28 147.26 130.33 2.26 100.00

2. Social Planner (SP) 0.60 25.42 45.34 5.64 44.70 240.42 27.80 2.94 104.47

3. SP choosing innovation 0.52 25.63 38.71 54.45 6.91 147.26 130.33 2.26 100.00

4. SP choosing q̂min 0.94 25.90 38.13 39.74 18.92 161.16 29.91 2.43 101.58

5.5 Uniform Optimal Policy

The social planner’s allocation discussed in the previous subsection relied on choosing the exit
thresholds and R&D rates of different types of firms. In practice, policies cannot be directly
conditioned on type (at least not without also specifying relevant incentive compatibility con-
straints).16 Motivated by this restriction, in this subsection we study how much of the gap
between the baseline equilibrium allocation and the social planner’s allocation characterized in
the previous subsection can be closed with uniform policies. In Table 12, we start by looking at
the optimal choice of each one of the three policies already introduced previously.

Panel A again depicts the baseline equilibrium for comparison. In Panel B, we show that
the optimal rate of incumbent R&D subsidy (by itself) would be si = 39%, which is higher
than what we considered in Table 7 above, but has similar implications. In Panel C, we turn to
taxes/subsidies on operations. Here, we see that the optimal policy is a rather large tax (instead
of the subsidy considered in Table 8 above). With this optimal tax rate of so = −69%,17 we
can obtain a significant increase in growth, achieving g = 2.54%. As with the social planner’s
allocation, this is made possible by increasing the exit thresholds and generating a significant
selection effect—the fraction of product lines operated by high-type firms increases from 10% to
18%. Finally, Panel D shows that entry subsidies have a very small effect.

In sum, the results of single uniform tax/subsidy policies Panels A-D in Table 12 suggest that
taxes on the operations (or the fixed costs of operations) may be the most potent policies.

We next analyze the optimal combination of these uniform policies, with the results presented

16See Scotchmer (2004), Hopenhayn et al. (2006), and Akcigit et al. (2016b) on the design of policies to encourage
innovation under asymmetric information.

17Recall that this is a tax on the fixed costs of operation, wsφ, not on all costs or revenues of firms. The 69% tax on
the fixed costs of operation of incumbents is equivalent to an average tax of 8% on the revenues of incumbents.
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Table 12: Uniform Policies

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline
0.51 25.90 38.13 55.04 6.28 147.26 130.33 19.86 17.16 2.26 100.00

Panel B. Incumbent R&D (si = 39%)
0.38 30.74 46.54 47.67 8.65 160.07 142.83 26.40 19.06 2.51 101.22

Panel C. Operation (so = −69%)
0.61 30.78 46.04 45.95 9.84 161.50 145.72 27.08 19.29 2.54 101.42

Panel D. Entry (se = 18%)
0.62 25.74 37.69 54.26 6.95 147.58 131.35 20.00 17.20 2.27 100.04

Panel E. Incumbent R&D and Operation (si = −3%, so = −74%)
0.63 30.74 45.94 45.90 9.90 161.50 145.81 27.07 19.29 2.54 101.42

in Panel E of Table 12. Panel D already showed that entry subsidies are not very effective, and
it turns out that conditional on using incumbent R&D subsidies and operation taxes, there is
no further gain from using entry subsidies. So, Panel E focuses on the optimal combination
of incumbent R&D subsidies and taxes on the fixed costs for continuing firms. The optimal
combination of these uniform policies involves a large tax on fixed costs (so = −74%) and perhaps
surprisingly also a small tax on incumbent R&D (si = −3%). The resulting allocation increases
the growth rate of the economy to 2.54% and secures a 1.42% consumption-equivalent welfare
gain. This gain is achieved by substantially increasing the exit threshold for low-type firms, which
then increases the ratio of product lines operated by high-type firms to those operated by low-
type firms from 11% in the baseline to 22%. With the skilled labor freed from operations, overall
R&D investments also increase, though because these are uniform policies, R&D investments by
both types of firms increase in tandem.

6 Robustness

The broad pattern of estimation results and policy analyses reported so far is quite robust. In this
section, we illustrate this by considering a number of variations on our sample and model. In
each case, the implied parameter estimates and the match between model and data moments are
depicted in online Appendix B, while in the text we report the baseline equilibrium moments,
the social planner’s allocation and the allocation that results from the optimal choice of uniform
incumbent R&D subsidies and taxes on operations.

6.1 Employment-weighted Sample

Our baseline estimation targets unweighted moments. Our first variation shows that targeting
moments weighted by beginning of period employment (which means that we are using such
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weighted moments both in the model and the data) makes little difference. The results are
shown in Table 13, where we see similar values for most key equilibrium objects. The social
planner’s allocation reported in Panel B is also very similar to the baseline, though the increase
in the growth rate is a little more modest—from 2.22% to 2.54%, with a corresponding 1.25%
consumption-equivalent welfare gain. The implications of the optimal uniform policies are also
similar (and these policies again involve a large tax on operations and in this case, no tax or
subsidy on incumbent R&D), increasing the growth rate to 2.39%, with a consumption-equivalent
welfare gain of 0.56%. The main reason for the smaller gains from both the social planner’s
allocation and the optimal uniform policies is that the ratio of product lines operated by high-
type firms to low-type firms is not as low in this case as in our baseline estimation, thus limiting
the extent of the selection effects that optimal policies leverage.

Table 13: Employment-weighted Estimation

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline
0.52 25.26 47.76 63.37 11.62 126.53 89.02 23.86 22.08 2.22 100.00

Panel B. Social Planner
0.58 24.43 52.99 38.08 28.90 152.47 42.06 31.99 25.20 2.54 101.25

Panel C. Incumbent R&D and Operation (si = 0%, so = −47%)
0.57 27.28 51.53 53.96 16.41 138.78 109.77 28.54 23.74 2.39 100.56

6.2 Organic Sample that Excludes M&A Activities

Our baseline sample includes “inorganic” entry and exit, taking the form of mergers and acqui-
sitions (M&A) and spinouts (where part of an existing firm becomes a new legal entity). We next
reestimate the model after removing all observations we determined to be potentially influenced
by inorganic activity on these margins.18 The results from this exercise are reported in Table
14. The broad patterns of various policy implications remain very similar to the baseline—for
example, the social planner is now able to increase growth from 2.24% to 2.90%, with a 4.17%
consumption-equivalent welfare gain, and the optimal policies once again involve a substantial
tax on operations of continuing firms and no tax or subsidy on incumbent R&D.

18We identify these cases following the procedures of Haltiwanger et al. (2013). We use the establishment identifiers,
which are distinct from firm identifiers, to identify cases where an establishment exists before or after the associated
firm id. We flag as being a potentially inorganic birth the cases where more than 10% of the firm’s initial employment
appears to come from a pre-existing establishment owned by another firm in the prior year; similarly, a potential
inorganic exit is flagged when more than 10% of the exiting firm’s employment is in a plant that transfers to a new
firm in the following year. This 10% bar is aggressive, but also serves well to test the issues. About 19% of births, 30%
of exits, and 41% of firms overall show some measure of inorganic activity in our innovative firm sample. Excluding
these firms leaves a sample size of 9,854 firm-period observations.
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Table 14: Excluding M&A Activities

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.46 27.24 33.97 55.48 2.41 154.57 146.64 18.33 16.39 2.24 100.00

Panel B. Social Planner

0.58 28.84 44.41 3.17 44.38 269.34 29.39 32.91 21.20 2.90 104.17

Panel C. Incumbent R&D and Operation (si = −4%, so = −84%)

0.60 33.99 43.00 48.80 3.49 168.45 160.26 26.22 18.69 2.56 101.82

6.3 Manufacturing Sample

Because of our reliance on R&D moments, our baseline sample includes continuously-innovative
firms as explained in Section 3.1, and thus excludes most manufacturing firms. We believe that
the same dynamics should apply to many firms that do not report R&D but still engage in
innovation-type activities to take over product lines currently operated by competitors.19 To in-
vestigate this issue, we first reestimated our model dropping all R&D moments and calculating
the remaining 15 moments using the universe of manufacturing firms (982,559 firm-period ob-
servations). We weight each firm such that the firm size distribution matches that of our core
sample using 16 size bins. The results of this estimation are reported in Panel A of Table 15.20

Table 15: Full Manufacturing (Non-innovating Firms Included)

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline
1.71 5.08 29.69 22.92 4.63 215.50 118.64 25.47 4.25 1.92 100.00

Panel B. Social Planner
1.95 5.29 35.03 16.93 6.63 256.76 53.92 36.29 5.17 2.34 101.88

Panel C. Incumbent R&D and Operation (si = 7%, so = −41%)
1.80 5.72 33.80 20.34 5.10 233.44 149.89 31.17 4.69 2.12 100.75

The overall patterns are similar to our baseline, though with lower innovation rates and
aggregate growth, likely reflecting the inclusion of less innovative firms in the sample. Panel B
shows that the social planner’s allocation can again increase growth significantly (from 1.92%
to 2.34%), and achieves this once again by leveraging the selection effects. The implications of

19See National Research Council (2004) and Corrado et al. (2005) on the range of innovation activities not recorded
in R&D surveys.

20We also verified that dropping the R&D moments in our baseline sample leads to similar estimation results and
policy conclusions. These results are reported in Appendix B-3.
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optimal uniform policies in Panel C are also similar, though now there is a small subsidy to
incumbent innovation too.

6.4 Model with Unskilled Overhead Labor

In this subsection, we return to our initial sample but modify our baseline model to allow for
the fixed operations cost to consist of both skilled and unskilled labor. Namely, we assume that
a β fraction of the overhead labor φ has to be skilled, and the remaining 1− β fraction is from
unskilled labor. This leads to a simple generalization of our setup, with the Bellman equation for
a k−type firm now taking the form

rṼk
(
Q̂
)
−
·

Ṽk
(
Q̂
)
= max

xk≥0


∑q̂∈Q̂

[
π̃(q̂)− φ [βw̃s + (1− β)w̃u]

+τ
[
Ṽk
(
Q̂\ {q̂}

)
− Ṽk

(
Q̂
)] ]

−nw̃sG(x, θk) + nxk
[
EṼk

(
Q̂ ∪ {q̂ + λ ¯̂q}

)
− Ṽk

(
Q̂
)]

+ϕ
[
0− Ṽk

(
Q̂
)]

+ Ik=hν
[
Ṽl
(
Q̂
)
− Ṽh

(
Q̂
)]

 , for k ∈ {l, h} .

The labor-market clearing conditions are then modified to accommodate the use of both skilled
and unskilled labor in operations as follows

LS = LRD + Φβφ and 1 = LP + Φ(1− β)φ.

We also set the parameter β to match the fraction of managers who have a college degree or
above, which is 45.7%. The results are reported in Table 16.

Table 16: Model with Unskilled Overhead Labor

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.56 21.48 36.46 54.08 10.26 134.58 104.20 28.70 15.91 2.23 100.00

Panel B. Social Planner

0.59 19.77 39.08 38.48 22.23 151.12 30.07 32.71 16.89 2.37 100.56

Panel C. Incumbent R&D and Operation (si = −4%, so = −9%)

0.59 21.76 36.92 52.64 10.93 136.93 107.82 29.54 16.08 2.26 100.02

The baseline estimation leads to very similar results. The implications of the social planner’s
allocation and optimal uniform policies are also similar, but generate smaller gains relative to
the baseline—in large part because the ability of these policies to free up skilled labor from
operations is now more limited. All the same, the qualitative patterns are similar, and both the
social planner’s direct intervention and the optimal uniform policies again leverage the selection
effect.21

21Perhaps the most important difference is that the tax on the operations of continuing firms is now smaller, 9%, as
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6.5 Model with Reallocation Cost

Our baseline model does not incorporate any costs for reallocating labor from the original firm
operating a product line to a new one taking it over. In practice, there may be several types
of reallocation costs, both because some workers might go through unemployment and also
because some employees may need to be retrained to work for their new employers or with new
technologies. Here, we investigate the implications of allowing for these types of reallocation
costs by introducing them in a reduced-form manner. Namely, we assume that hiring new
workers entails training costs, and training each type of worker requires υ workers of the same
type for training. As a result, when a new firm hires l new unskilled workers and φ skilled
workers for operations, it incurs an additional cost of υ [w̃ul + w̃sφ] (the reallocation of R&D
inputs is assumed to be costless). This modification leads to a small modification in the Bellman
equations, which now take the form

rṼk
(
Q̂
)
−
·

Ṽk
(
Q̂
)
= max

xk≥0



∑q̂∈Q̂
[
π̃(q̂)− w̃sφ + τ

[
Ṽk
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)
− Ṽk
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Q̂
)]]
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+nxk
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
, for k ∈ {l, h} ,

where we have imposed that the reallocation costs are paid when the firm expands by taking over
a product line from another incumbent. Because in equilibrium reallocation costs are incurred at
the rate of average creative destruction τ, the labor-market clearing conditions become

LS
supply = LS

demand + υτφ and LP
supply = LP

demand + τυLP
demand.

We identify the new cost parameter υ using estimates from Bloom et al. (2014) on the costs of
training as equivalent to one month of a worker’s time, which translates into υ = 1/12. The
resulting baseline equilibrium values and policy experiments are reported in Table 17, which
shows very similar results to the baseline.

Table 17: Model with Reallocation Cost

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline
0.41 23.49 43.60 60.26 4.89 137.43 106.61 19.57 16.70 2.25 100.00

Panel B. Social Planner
0.49 24.53 52.38 31.57 23.58 173.87 30.47 31.65 20.58 2.77 102.55

Panel C. Incumbent R&D and Operation (si = 7%, so = −73%)
0.46 26.55 52.72 48.15 10.81 154.34 127.68 27.05 18.94 2.55 101.44

opposed to the taxes that were around 70% in our other samples and variations.
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For example, the social planner’s allocation increases the growth rate from 2.25% to 2.77%,
with a consumption-equivalent welfare gain of 2.55%. Optimal uniform policies again impose a
substantial tax operations and achieve a 1.44% consumption-equivalent welfare gain.

6.6 Model with Three Types of Firms

We next verify that our results are not unduly sensitive to assuming two types of firms by
extending the model to three types of firms. The estimation results reported in Appendix B show
that the innovative capacities of high-type and middle-type firms are estimated to be similar.
Unsurprisingly in view of this, we find Table 18 that the policy implications also remain similar.
For example, the social planner’s allocation increases the growth rate from 2.20% to 2.94%, with
a consumption-equivalent welfare gain of 5.6%. Optimal uniform policies again substantially
tax the fixed cost of operations for continuing firms and achieve 1.81% consumption-equivalent
welfare gain.

Table 18: Model with Three Types

(
θH, θM, θL)

xentry xl xm xh Φl Φm Φh q̂l,min q̂m,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline

0.51 25.83 38.19 40.85 52.32 5.07 1.12 153.14 136.78 132.04 19.11 16.41 2.20 100.00

Panel B. Social Planner

0.34 23.23 45.83 46.97 2.30 24.21 21.19 277.38 0.25 95.08 34.04 21.92 2.94 105.60

Panel C. Incumbent R&D and Operation (si = 6%, so = −69%)

0.59 31.35 46.90 50.83 42.30 6.50 3.78 169.22 154.47 149.30 27.29 18.82 2.52 101.81

6.7 Model with Endogenous Supply of Skills

Finally, we extend our model to endogenize the supply of skilled workers. Specifically, we adapt
our framework to an overlapping generations setup where each individual faces a constant death
rate of ζ, and a measure ζ of new agents arrive at each instant, so that total population remains
constant. In addition, each agent has a type indexed by κ. Upon entry into the economy, agents
have a decision to acquire skills. Each agent can supply one unit of unskilled labor without
any investment, and can also supply one unit of skilled labor if they acquire education, which
is assumed to last a∗ years for everybody. Education requires some of the skilled workers to
be allocated to teaching, and we assume that an agent with type κ requires the services of 1/κ

teachers during his education. Thus, the costs of education are higher for agents with low κ,
and because these agents will have to bear this cost of education, they are less likely to become
skilled.
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We take the distribution of κ to be truncated Pareto,

κ ∼ Aκχ−1,

for convenience, where χ < 1, κ ∈ [0, κ̄] and A = χκ̄−χ.

Education decisions are some of the most heavily subsidized activities in practice. In our
model too the social planner will face a strong incentive to subsidize education because skilled
workers create positive externalities when they perform R&D. If we rule out such subsidies, then
other optimal policies would try to mimic them, potentially distorting the results of our policy
analysis. For this reason, we also introduce an education subsidy at the rate sedu ∈ [0, 1] that
reduces the cost of education faced by the agents. Incorporating this subsidy, we can see that an
agent of type κ will acquire education if

e−(r−g+ζ)a∗wS

r− g + ζ︸ ︷︷ ︸
present value of skilled worker

− (1− sedu)
1
κ

wS

∫ a∗

0
e−(r−g+ζ)tdt︸ ︷︷ ︸

present value of education cost

>
wU

r− g + ζ︸ ︷︷ ︸
present value of unskilled worker

.

The right-hand side of this expression is the present discounted value of working as an unskilled
worker, taking into account that the unskilled wage at the moment, wU , will grow at the rate g,
and that the agent has an effective discount rate of r + ζ. The first term on the left-hand side is
the present discounted value of working as a skilled labor, which recognizes that skilled workers
will have no earnings during the first a∗ years of their lives. Finally, the second term on the
left-and side is the subsidized cost of education for a worker of type κ. This comparison gives a
threshold for κ,

κ∗ = (1− sedu)
[
1− e−(r−g+ζ)a∗

] (
e−(r−g+ζ)a∗ − wU

wS

)−1

,

such that only those with κ > κ∗ will become skilled.

We denote the total population by L, which comprises unskilled labor (LP), skilled R&D labor
(LRD), skilled labor working in operations (LF), skilled teachers (LT), and students still in the
education process (LE). Given the exponential age structure (due to the constant death rate), the
fraction of workers becoming skilled who are still below the age of a∗ is 1− e−ζa∗ , which implies
that in the stationary equilibrium, the masses of teachers and students are, respectively,

LT = L
(

1− e−ζa∗
) ∫ κ̄

κ∗

1
κ

dF(κ) and LE = L
(

1− e−ζa∗
)
(1− F(κ∗)) .

Incorporating the employment of skilled workers as teachers, the labor market-clearing condi-
tions become

LRD + LF = L
[

e−ζa∗
(

1− A
χ
(κ∗)χ

)
−
(

1− e−ζa∗
) A

χ− 1

(
κ̄χ−1 − (κ∗)χ−1

)]
and LP = L

A
χ
(κ∗)χ .
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To estimate this extended model with endogenous supply of skills, we choose the parameter
ζ as 35 years to approximate the working life of skilled workers, and set a∗ = 4 as the length
of post-secondary education. We then choose χ = 0.035, κ̄ = 95.55, and L = 1.193 so that this
extended model replicates the supply of skilled and unskilled labor in our benchmark economy
(LRD + LF = 0.166 and LU = 1) and 0.6% of total employment (= LT/(LRD + LF + LP + LT))
being devoted to post-secondary teaching as in the US economy. By construction, the estimates
for the remaining parameters are identical to our baseline estimates reported in Table 2 (because
LRD + LF = 0.166 and LU = 1 as before).

Table 19 reports the results of our policy analysis in this case. The baseline allocation without
the education subsidy is identical to our benchmark results by construction and is reported in
Panel A for comparison. Panel B shows that introducing an optimal education subsidy, at the
rate sedu = 0.81, increases the growth rate from 2.26 to 2.69, and secures a 11% improvement
in welfare. This sizable welfare effect reflects the severe underprovision of skilled labor in the
benchmark allocation. Panel C provides the social planner’s optimal allocation, which exploits
the same selection effect as in our baseline model and increases the growth rate further by another
0.59 percentage points to 3.28 and welfare by an additional 3.46% relative to the allocation with
optimal education subsidy. The additional welfare and growth gains from the social planner’s
allocation over the one with just education subsidies are similar to the gains from the social
planner’s allocation in our benchmark economy.

Table 19: Model with Endogenous Supply of Skills

xentry xl xh Φl Φh q̂l,min q̂h,min LS LR&D

LS τ g Wel

Panel A. Baseline
0.51 25.90 38.13 55.04 6.28 147.26 130.33 16.55 19.86 17.16 2.26 100.00

Panel B. Baseline with Optimal Education Subsidy (sedu = 81%)
0.55 27.46 40.98 60.02 8.26 133.97 114.56 18.94 22.03 20.41 2.69 110.96

Panel C. Social Planner
0.63 26.81 47.73 16.13 41.68 188.74 28.86 18.93 33.93 24.84 3.28 114.42

Panel D. Incumbent R&D, Operation Cost and Education Policies (si = −3%, so = −62%, sedu = 92%)
0.65 31.32 47.22 50.58 12.36 147.01 129.78 18.94 28.10 22.33 2.94 112.08

Panel D shows that the same mix of uniform policies as before—incumbent R&D subsidy and
tax on operation costs—but now combined with education subsidies lead to somewhat smaller
gains than the social planner, but again achieve this by leveraging the selection effect. In par-
ticular, in addition to a higher education subsidy, sedu = 0.92, we have a tax on operations,
which has a very similar magnitude to our baseline results (so = −0.62), and a small tax on
incumbent R&D (si = −0.03). These policies again increase the exit thresholds, and especially
for low-type firms, and increase the growth rates to 2.94% and lead to 12.08% improvement
in consumption-equivalent welfare. Thus overall, we conclude that our policy conclusions are
robust to endogenizing the supply of skilled labor.
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7 Conclusions

In this paper we build a micro-founded model of firm innovation and growth. The model enables
us to examine the forces jointly driving innovation, productivity growth and reallocation. We
estimate the parameters of the model using simulated method of moments on detailed US Census
Bureau micro data on employment, output, R&D and patenting. Our model fits the key moments
from microdata reasonably well, and also performs well on non-targeted moments and is in line
with the range of micro estimates in the literature.

We use the model to investigate the implications of several types of industrial policies on
long-run growth and welfare. We find that industrial policies (subsidies to incumbent R&D or to
their operating costs) reduce growth and welfare, and entry subsidies are also ineffective. These
small effects are not because the equilibrium of our model is approximately optimal. On the
contrary, a social planner limited to affecting only R&D, entry and exit decisions can increase
growth from 2.26% to 2.94%, and increase welfare by 4.47%. The social planner achieves this by
strongly leveraging the selection effect. She forces low-type incumbents to exit at a very high
rate, reduces their R&D, and increases the R&D of high-type incumbents.

Our general equilibrium model, which incorporates both reallocation and selection effects,
also highlights the potential pitfalls of industrial policies supporting incumbents. Though there
is substantial underinvestment in R&D, the optimal policy is not to subsidize R&D-type activities,
because such subsidies increase R&D investments by both low-type and high-type firms. Instead,
optimal policy should free up resources from the operations of low-type firms to be used for R&D
by high-type firms, and this can be achieved by encouraging the exit of low-productivity firms,
for example by taxing the operations of all firms.

Several further topics of inquiry are left for future research. First, it would be interesting to
extend our analysis to incorporate an endogenous selection between non-innovation and innova-
tion, and also to incorporate reallocation of other resources (unskilled labor and capital). Second,
our analysis has been confined to comparisons of stationary equilibria (balanced growth paths),
thus ignoring transition costs, which could be nontrivial. Third, and related, our baseline model
did not incorporate any reallocation costs, though we allowed for such costs in a reduced-form
manner in our extensions. A more systematic investigation of such costs would necessitate an
micro-founded model of closely allocation of resources, for example via search (see Lentz and
Mortensen, 2010) for a complementary approach on this question). Fourth, an interesting possi-
ble extension of our framework would be to model the joint dynamics of innovation, reallocation
and unemployment, which can enrich the analysis of the effects of various policies, and also
enable us to incorporate some of the potential unemployment benefits of supporting incumbent
producers. Fifth, we have also abstracted from political constraints. It would be important to
consider the political economy of different types of industrial policies, which have often been
politically difficult to manage and prone to capture. Sixth, our model can also be used to study
mergers between high- and low-type firms which might be able to make more efficient use of
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the existing knowledge stock of low-type firms in certain circumstances. Finally, supplementing
our approach with more direct estimation of the costs and benefits of different types of policies
targeted at R&D by incumbents is a major area for future research.
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Appendix A

Proof of Lemma 1. Consider the low-type firms and conjecture Ṽl
(
Q̂
)
= ∑

q̂∈Q̂
Υl (q̂) :

r ∑
q̂∈Q̂

Υl (q̂) = ∑
q̂∈Q̂

max

{
0, max

x≥0

[
π̃
(
q̂j
)
− w̃sφs − w̃sG

(
x, θL)+ ∂Υl(q̂)

∂q̂
∂q̂

∂wu
∂wu

∂t

+xEΥl (q̂ + λ ¯̂q)− (τ + ϕ)Υl (q̂)

]}
,

which implies

rΥl (q̂) = max

{
0,

{
π̃ (q̂)− w̃sφs + ∂Υl(q̂)

∂q̂
∂q̂

∂wu
∂wu

∂t − (τ + ϕ)Υl (q̂)

+maxx≥0
[
xEΥl (q̂ + λ ¯̂q)− w̃sG

(
x, θL)]

}}
,

where we also use the fact that a firm can choose not to operate an individual product line.
Next consider the high-type firms and conjecture Ṽh

(
Q̂
)
= ∑

q̂∈Q̂
Υh (q̂) :

r ∑
q̂∈Q̂

Υh (q̂) = ∑
q̂∈Q̂

max

0, max
x≥0

 π̃ (q̂)− w̃sφs − w̃sG
(
x, θH)+ ∂Υh(q̂)

∂q̂
∂q̂

∂wu
∂wu

∂t

+xEΥh (q̂ + λ ¯̂q)
− (τ + ϕ)Υh (q̂) + ν

[
Iq̂>q̂l,min · Υl (q̂)− Υh (q̂)

]

 ,

which similarly implies

rΥh (q̂) = max

0, max
x≥0

 π̃ (q̂)− w̃sφs − w̃sG
(
x, θH)+ ∂Υh(q̂)

∂q̂
∂q̂

∂wu
∂wu

∂t +

xEΥh (q̂ + λ ¯̂q)
− (τ + ϕ)Υh (q̂) + ν

[
Iq̂>q̂l,min · Υl (q̂)− Υh (q̂)

]

 .

Monotonicity follows from the fact that the per-period return function is increasing in q̂.

Proof of Proposition 1. First note that π̃ (q) =
(

ε−1
ε

)ε 1
ε−1 q̂ε−1 = Πq̂ε−1. Then, defining

Ψ ≡ r + τ + ϕ, equation (17) can be written as the following linear differential equation

ΨΥl (q̂) + gq̂
∂Υl (q̂)

∂q̂
= Πq̂ε−1 + Ωl − w̃sφ if q̂ > q̂l,min

or

ξ1q̂−1Υl (q̂) +
∂Υl (q̂)

∂q̂
= ξ2q̂ε−2 − ξ3q̂−1, (A-1)

where ξ1 ≡ Ψ
g , ξ2 ≡ Π

g and ξ3 ≡ w̃sφ−Ωl

g . Then the solution to (A-1) can be written as

Υl (q̂) = q̂−ξ1

(∫ [
ξ2tξ1+ε−2 − ξ3tξ1−1

]
dt + D

)
=

ξ2q̂ε−1

ξ1 + ε− 1
− ξ3

ξ1
+ Dq̂−ξ1 .
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Imposing the boundary condition Υl (q̂l,min) = 0, we can solve out for the constant of integra-
tion D, obtaining

Υl (q̂) =
ξ2q̂ε−1

ξ1 + ε− 1
− ξ3

ξ1
+

(
ξ3q̂ξ1

l,min

ξ1
−

ξ2q̂ξ1+ε−1
l,min

ξ1 + ε− 1

)
q̂−ξ1 (A-2)

=
Πq̂ε−1

Ψ + (ε− 1) g

(
1−

(
q̂l,min

q̂

) Ψ
g +ε−1

)
+

Ωl − w̃sφ

Ψ

(
1−

(
q̂l,min

q̂

) Ψ
g
)

.

We next provide the derivation of the value for a high-type product line. Let us rewrite the
expression in (A-2) as

Υl (q̂) = ξ4q̂ε−1 + ξ5q̂−
Ψ
g − ξ6,

where

ξ4 ≡
Π

Ψ + (ε− 1) g
, ξ5 =

(
w̃sφ−Ωl) q̂

Ψ
g

l,min

Ψ
−

Πq̂
Ψ
g +ε−1
l,min

Ψ + g (ε− 1)
, and ξ6 =

w̃sφ−Ωl

Ψ
.

Recall the value of a product line of a high-type firm

(Ψ + ν)Υh (q̂) +
∂Υh (q̂)

∂q̂
gq̂ = Πq̂ε−1 + Ωh − w̃sφ + ν

(
ξ4q̂ε−1 + ξ5q̂−

Ψ
g − ξ6

)
for q̂ ≥ q̂l,min

(Ψ + ν)Υh (q̂) +
∂Υh (q̂)

∂q̂
gq̂ = Πq̂ε−1 + Ωh − w̃sφ for q̂l,min > q̂ ≥ q̂h,min,

which can be rewritten as

K1Υh (q̂) q̂−1 +
∂Υh (q̂)

∂q̂
= K2q̂ε−2 + K3q̂−

Ψ+g
g − K4q̂−1,

where

K1 ≡
Ψ + ν

g
, K2 ≡

Π + νξ4

g
, K3 ≡

νξ5

g
and K4 ≡

νξ6 + w̃sφ−Ωh

g
for q̂ ≥ q̂l,min (A-3)

K1 ≡
Ψ + ν

g
, K2 ≡

Π
g

, K3 ≡ 0 and K4 ≡
w̃sφ−Ωh

g
for q̂l,min > q̂ ≥ q̂h,min. (A-4)

Then we can express the general solution for the high-type value function as

Υh (q̂) = q̂−K1

(∫ [
K2q̂K1+ε−2 + K3q̂K1− Ψ+g

g − K4q̂K1−1
]

dq̂ + D
)

=
K2q̂ε−1

K1 + ε− 1
+

K3q̂1− Ψ+g
g

K1 + 1− Ψ+g
g

− K4

K1
+ Dq̂−K1 . (A-5)
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To find the constant of integration D, we use Υh (q̂h,min) = 0, which yields

D = −
K2q̂K1+ε−1

h,min

K1 + ε− 1
−

K3q̂
K1+1− Ψ+g

g
h,min

K1 + 1− Ψ+g
g

+
K4q̂K1

h,min

K1
for q̂ ∈ [q̂h,min, q̂l,min] .

Then we can express the value function as

Υh (q̂) =


K2 q̂ε−1

K1+ε−1 +
K3 q̂1−Ψ+g

g

K1+1− Ψ+g
g
− K4

K1

+

− K2 q̂ε−1
h,min

K1+ε−1 −
K3 q̂

1−Ψ+g
g

h,min

K1+1− Ψ+g
g

+ K4
K1

 ( q̂h,min
q̂

)K1

 =

K2 q̂ε−1

K1+ε−1

[
1−

(
q̂h,min

q̂

)K1+ε−1
]

+K3 q̂−
Ψ
g

K1− Ψ
g

[
1−

(
q̂h,min

q̂

)K1− Ψ
g
]

−K4
K1

[
1−

(
q̂h,min

q̂

)K1
] .

Then from (A-4), we have that for q̂ ∈ [q̂h,min, q̂l,min],

Υh (q̂) =
Πq̂ε−1

Ψ + ν + (ε− 1) g

1−
(

q̂h,min

q̂

) Ψ+ν+(ε−1)g
g

+
Ωh − w̃sφ

Ψ + ν

(
1−

(
q̂h,min

q̂

) Ψ+ν
g
)

.

Intuitively, because product lines with relative quality q̂ ∈ [q̂h,min, q̂l,min] immediately become
obsolete when operated by low-type firms, but not by high-type firms, the flow rate of transi-
tioning from high-type to low-type, ν, becomes part of the effective discount rate in this range.

For q̂ ≥ q̂l,min, the appropriate values for K’s from (A-3) delivers (A-5) as

Υh (q̂) =
Πq̂ε−1

Ψ + (ε− 1) g

1−
(

q̂l,min

q̂

) Ψ+(ε−1)g
g

+
Ωl − w̃sφ

Ψ

(
1−

(
q̂l,min

q̂

) Ψ
g
)
+

Ωh −Ωl

Ψ + ν
+Dq̂−

Ψ+ν
g

We also have the boundary condition

Υh (q̂l,min) =
Πq̂ε−1

l,min

Ψ + ν + (ε− 1) g

1−
(

q̂h,min

q̂l,min

) Ψ+ν+(ε−1)g
g

+
Ωh − w̃sφ

Ψ + ν

(
1−

(
q̂h,min

q̂l,min

) Ψ+ν
g
)

.

(A-6)
Hence, the constant of integration for q̂ ≥ q̂l,min must satisfy (A-6) . Next using (A-3) and

(A-5), Υh (q̂l,min) for q̂ ≥ q̂l,min can be computed as

Υh (q̂l,min) =
K2q̂ε−1

l,min

K1 + ε− 1
+

K3q̂
1− Ψ+g

g
l,min

K1 + 1− Ψ+g
g

− K4

K1
+ Dq̂−K1

l,min

=
(Π + νξ4) q̂ε−1

l,min

Ψ + ν + g (ε− 1)
+ ξ5q̂

− Ψ
g

l,min −
νξ6 + w̃sφ−Ωh

Ψ + ν
+ Dq̂

− Ψ+ν
g

l,min , (A-7)
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which must be equal to (A-6) . Equating (A-6) to (A-7), we get

D =

 − Π
Ψ+ν+(ε−1)g q̂

Ψ+ν+(ε−1)g
g

h,min + w̃sφ−Ωh

Ψ+ν q̂
Ψ+ν

g
h,min

− νξ4
Ψ+ν+g(ε−1) q̂

Ψ+ν+(ε−1)g
g

l,min − ξ5q̂
ν
g
l,min +

νξ6
Ψ+ν q̂

Ψ+ν
g

l,min

 .

Hence

q̂−
Ψ+ν

g D =


Πq̂ε−1

Ψ+ν+g(ε−1)

(
1−

(
q̂h,min

q̂

) Ψ+ν+(ε−1)g
g

)
− Πq̂ε−1

Ψ+ν+g(ε−1)

(
1−

(
q̂l,min

q̂

) Ψ+ν+(ε−1)g
g

)
+Ωl−Ωh

Ψ+ν

− w̃sφ−Ωh

Ψ+ν

(
1−

(
q̂h,min

q̂

) Ψ+ν
g
)
+ w̃sφ−Ωl

Ψ+ν

(
1−

(
q̂l,min

q̂

) Ψ+ν
g
)


.

Therefore, for q̂ ≥ q̂l,min we have

Υh (q̂) =



Πq̂ε−1

Ψ+ν+g(ε−1)

(
1−

(
q̂h,min

q̂

) Ψ+ν+(ε−1)g
g

)
+ Ωh−w̃sφ

Ψ+ν

(
1−

(
q̂h,min

q̂

) Ψ+ν
g
)

Πq̂ε−1

Ψ+(ε−1)g

(
1−

(
q̂l,min

q̂

) Ψ+(ε−1)g
g

)
+ Ωl−w̃sφ

Ψ

(
1−

(
q̂l,min

q̂

) Ψ
g
)

−
(

Πq̂ε−1

Ψ+ν+g(ε−1)

(
1−

(
q̂l,min

q̂

) Ψ+ν+(ε−1)g
g

)
+ Ωl−w̃sφ

Ψ+ν

(
1−

(
q̂l,min

q̂

) Ψ+ν
g
))


.

Finally, we need to determine the values for the exit thresholds q̂l,min and q̂h,min. Using the
above differential equations we get

∂Υl (q̂)
∂t

∣∣∣∣
q̂=q̂l,min

=
1
g

(
Πq̂ε−2

l,min +
Ωl − w̃sφ

q̂l,min

)
.

From the smooth-pasting condition we get

∂Υl (q̂)
∂q̂

∣∣∣∣
q̂=q̂l,min

= 0 =⇒ q̂l,min =

(
w̃sφ−Ωl

Π

) 1
ε−1

.

Similarly, we also have

∂Υh (q̂)
∂q̂

∣∣∣∣
q̂=q̂h,min

=
Π

Ψ + ν + (ε− 1) g

(
(ε− 1) q̂ε−2 +

Ψ + ν

g
q̂

Ψ+ν+(ε−1)g
g

h,min q̂−
Ψ+ν

g −1
)
− w̃sφ−Ωh

g
q̂

Ψ+ν
g

h,minq̂−
Ψ+ν

g −1

and ∂Υh(q̂)
∂q̂

∣∣∣
q̂=q̂h,min

= 0 implies

q̂h,min =

(
w̃sφ−Ωh

Π

) 1
ε−1

.
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Lemma 3 Let F denote the overall relative productivity distribution, including both active and inactive
product lines. In stationary equilibrium, it satisfies the following differential equation:

gq̂ f (q̂) = τ [F (q̂)− F(q̂− λ ¯̂q)] ,

where τ = Φhxh + Φlxl + xentry and ¯̂q =
∫ ∞

0 q̂ f (q̂) dq̂. Moreover let F̃k denote the (unnormalized)
distribution of relative productivities of active product lines, owned by type k ∈ {h, l}. In stationary
equilibrium, they satisfy

gq̂ f̃h(q̂) = gq̂h,min f̃h(q̂h,min) +
(

τl + ϕ + ν
)

F̃h(q̂)− τh [F(q̂− λ ¯̂q)− F(q̂h,min − λ ¯̂q)− F̃h(q̂)
]

gq̂ f̃l(q̂) = gq̂l,min f̃l(q̂l,min) +
(

τh + ϕ
)

F̃l(q̂)− τl [F(q̂− λ ¯̂q)− F(q̂l,min − λ ¯̂q)− F̃l(q̂)
]
− ν

[
F̃h(q̂)− F̃h(q̂l,min)

]
,

where τl = Φlxl + (1− α) xentry and τh = Φhxh + αxentry. The measure of active product lines are given
by

Φk = F̃k(∞), k ∈ {h, l} .

Proof of Lemma 3. In a stationary equilibrium inflows and outflows into different parts
of the distributions have to be equal. First consider overall productivity distribution F. Given a
time interval of ∆t, this implies that Ft (q̂) = Ft+∆t(q̂),

Ft (q̂) = Ft (q̂(1 + g∆t))− τ∆t [Ft (q̂)− Ft(q̂− λ ¯̂q)]

Next, subtract Ft (q̂ (1 + g∆t)) from both sides, multiply both sides by −1, divide again sides
by ∆t, and take the limit as ∆t→ 0, so that

lim
∆t→0

F (q̂ (1 + g∆t))− F (q̂)
∆t

= gq̂ f (q̂) .

Using this last expression delivers

gq̂ f (q̂) = τ [F (q̂)− F(q̂− λ ¯̂q)] .

Similarly, for active product line distributions F̃k, we can write

F̃h,t(q̂) = F̃h,t(q̂(1 + g∆t))− F̃h,t(q̂h,min(1 + g∆t)) + τh∆t
[
Ft(q̂− λ ¯̂q)− F̃h,t(q̂)− Ft(q̂h,min − λ ¯̂q)

]
−
(

τl + ϕ + ν
)

∆tF̃h,t(q̂)

F̃l,t(q̂) = F̃l,t(q̂(1 + g∆t))− F̃l,t(q̂l,min(1 + g∆t)) + τl∆t
[
Ft(q̂− λ ¯̂q)− F̃l,t(q̂)− Ft(q̂l,min − λ ¯̂q)

]
−
(

τh + ϕ
)

∆tF̃l,t(q̂) + ν∆t
[
F̃h,t(q̂)− F̃h,t(q̂l,min)

]
.
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Again, by subtracting F̃k,t (q̂ (1 + g∆t))− F̃k,t(q̂k,min(1+ g∆t)) from both sides, dividing by -∆t,
and taking the limit as ∆t→ 0, we get the desired equations for k ∈ {h, l} in Lemma 3.

Proof of Proposition 2. As shown in Lemma 3, overall productivity distribution satisfies

q̂ f (q̂) =
τ

g
[F(q̂)− F (q̂− λ ¯̂q)]

By integrating both sides over the domain, we get

E(q̂) ≡
∫ ∞

0
q̂ f (q̂)dq̂ =

τ

g

∫ ∞

0
[F(q̂)− F (q̂− λ ¯̂q)] dq̂

We can write above equation as follows

E(q̂) =
τ
g

1 + τ
g

∫ ∞

0
[1− F (q̂− λ ¯̂q)] dq̂.

as
∫ ∞

0 [1− F(q̂)] dq̂ = E(q̂).
By changing of variable as x = q̂− λ ¯̂q, which implies dx = dq̂, we have

E(q̂) =
τ
g

1 + τ
g

∫ ∞

−λ ¯̂q
[1− F (x)] dx =

τ

g
λ ¯̂q

Last equality follows from the fact that F(x) = 0 for x ≤ 0. In equilibrium we have, ¯̂q = E(q̂).
Therefore

g = τλ.
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Appendix B: Online Appendix for

“Innovation, Reallocation and Growth”
– Not for Publication unless Requested –

Daron Acemoglu Ufuk Akcigit Harun Alp

Nicholas Bloom William Kerr

In this Appendix, we provide additional details from the robustness exercises reported in the
text.

Estimation Results from the Robustness Exercises

B-1 Employment Weighted Sample

Table B-1: Estimated Parameters

# Parameter Description Value
1. φ Fixed cost of operation 0.168
2. θH Innovative capacity of high-type firms 2.209
3. θL Innovative capacity of low-type firms 1.532
4. θE Innovative capacity of entrants 0.025
5. α Probability of being high-type entrant 0.917
6. ν Transition rate from high-type to low-type 0.258
7. λ Innovation step size 0.101
8. ϕ Exogenous destruction rate 0.039

Table B-2: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.104 0.107 10. Sales growth (small-young) 0.079 0.079
2. Firm exit (small-old) 0.102 0.077 11. Sales growth (small-old) 0.020 0.019
3. Firm exit (large-old) 0.039 0.036 12. Sales growth (large-old) -0.023 -0.022
4. Trans. from large to small 0.025 0.010 13. R&D to sales (small-young) 0.100 0.075
5. Trans. from small to large 0.036 0.014 14. R&D to sales (small-old) 0.066 0.048
6. Prob. of small (cond on entry) 0.795 0.753 15. R&D to sales (large-old) 0.066 0.055
7. Emp. growth (small-young) 0.078 0.073 16. 5-year Entrant Share 0.361 0.393
8. Emp. growth (small-old) 0.020 0.028 17. Fixed cost-R&D labor ratio 3.284 5.035
9. Emp. growth (large-old) -0.023 -0.033 18. Aggregate growth 0.022 0.022
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B-2 Organic Sample that Excludes M&A Activities

Table B-3: Parameter Estimates

# Parameter Description Value
1. φ Fixed cost of operation 0.233
2. θH Innovative capacity of high-type firms 1.708
3. θL Innovative capacity of low-type firms 1.480
4. θE Innovative capacity of entrants 0.023
5. α Probability of being high-type entrant 0.806
6. ν Transition rate from high-type to low-type 0.213
7. λ Innovation step size 0.137
8. ϕ Exogenous destruction rate 0.030

Table B-4: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.097 0.112 10. Sales growth (small-young) 0.086 0.102
2. Firm exit (small-old) 0.091 0.067 11. Sales growth (small-old) 0.049 0.014
3. Firm exit (large-old) 0.030 0.022 12. Sales growth (large-old) -0.003 -0.003
4. Trans. from large to small 0.021 0.009 13. R&D to sales (small-young) 0.070 0.048
5. Trans. from small to large 0.037 0.010 14. R&D to sales (small-old) 0.065 0.061
6. Prob. of small (cond on entry) 0.873 0.899 15. R&D to sales (large-old) 0.057 0.035
7. Emp. growth (small-young) 0.088 0.106 16. 5-year Entrant Share 0.319 0.381
8. Emp. growth (small-old) 0.049 0.028 17. Fixed cost-R&D labor ratio 4.592 5.035
9. Emp. growth (large-old) -0.002 -0.002 18. Aggregate growth 0.022 0.022
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B-3 Baseline Estimation without R&D Moments

Table B-5: Estimated Parameters

# Parameter Description Value
1. φ Fixed cost of operation 0.215
2. θH Innovative capacity of high-type firms 1.711
3. θL Innovative capacity of low-type firms 1.407
4. θE Innovative capacity of entrants 0.030
5. α Probability of being high-type entrant 0.894
6. ν Transition rate from high-type to low-type 0.207
7. λ Innovation step size 0.130
8. ϕ Exogenous destruction rate 0.035

Table B-6: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.098 0.107 10. Sales growth (small-young) 0.095 0.107
2. Firm exit (small-old) 0.092 0.077 11. Sales growth (small-old) 0.046 0.024
3. Firm exit (large-old) 0.035 0.036 12. Sales growth (large-old) -0.005 -0.003
4. Trans. from large to small 0.021 0.010 13. R&D to sales (small-young) - -
5. Trans. from small to large 0.037 0.014 14. R&D to sales (small-old) - -
6. Prob. of small (cond on entry) 0.853 0.753 15. R&D to sales (large-old) - -
7. Emp. growth (small-young) 0.096 0.106 16. 5-year Entrant Share 0.333 0.393
8. Emp. growth (small-old) 0.046 0.035 17. Fixed cost-R&D labor ratio 4.263 5.035
9. Emp. growth (large-old) -0.005 -0.005 18. Aggregate growth 0.022 0.022

Table B-7: Excluding R&D Moments

xentry xl xh Φl Φh q̂l,min q̂h,min
LR&D

LS τ g Wel

Panel A. Baseline
0.62 26.04 35.71 56.67 5.15 146.54 133.84 19.62 17.24 2.23 100.00

Panel B. Social Planner
0.75 26.52 44.29 10.46 41.24 217.08 29.67 32.88 21.79 2.82 103.63

Panel C. Incumbent R&D and Operation (si = −2%, so = −69%)
0.76 31.10 43.34 49.08 7.52 159.59 147.21 26.57 19.29 2.50 101.38
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B-4 Manufacturing Sample

Table B-8: Parameter Estimates

# Parameter Description Value
1. φ Fixed cost of operation 0.448
2. θH Innovative capacity of high-type firms 0.277
3. θL Innovative capacity of low-type firms 0.058
4. θE Innovative capacity of entrants 0.017
5. α Probability of being high-type entrant 0.699
6. ν Transition rate from high-type to low-type 0.460
7. λ Innovation step size 0.452
8. ϕ Exogenous destruction rate 0.044

Table B-9: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.096 0.081 10. Sales growth (small-young) 0.018 0.018
2. Firm exit (small-old) 0.103 0.059 11. Sales growth (small-old) 0.001 0.001
3. Firm exit (large-old) 0.053 0.037 12. Sales growth (large-old) -0.059 0.008
4. Trans. from large to small 0.037 0.011 13. R&D to sales (small-young) - -
5. Trans. from small to large 0.020 0.009 14. R&D to sales (small-old) - -
6. Prob. of small (cond on entry) 0.530 0.669 15. R&D to sales (large-old) - -
7. Emp. growth (small-young) 0.018 0.020 16. 5-year Entrant Share 0.390 0.425
8. Emp. growth (small-old) 0.008 -0.003 17. Fixed cost-R&D labor ratio 4.955 5.035
9. Emp. growth (large-old) -0.055 -0.008 18. Aggregate growth 0.019 0.019
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B-5 Model with Unskilled Overhead Labor

Table B-10: Parameter Estimates

# Parameter Description Value
1. φ Fixed cost of operation 0.219
2. θH Innovative capacity of high-type firms 1.925
3. θL Innovative capacity of low-type firms 1.404
4. θE Innovative capacity of entrants 0.030
5. α Probability of being high-type entrant 0.883
6. ν Transition rate from high-type to low-type 0.196
7. λ Innovation step size 0.140
8. ϕ Exogenous destruction rate 0.049
9. β Fraction of managers with a college degree or above 0.457

Table B-11: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.099 0.107 10. Sales growth (small-young) 0.107 0.107
2. Firm exit (small-old) 0.098 0.077 11. Sales growth (small-old) 0.048 0.024
3. Firm exit (large-old) 0.046 0.036 12. Sales growth (large-old) -0.006 -0.003
4. Trans. from large to small 0.020 0.010 13. R&D to sales (small-young) 0.108 0.064
5. Trans. from small to large 0.039 0.014 14. R&D to sales (small-old) 0.076 0.059
6. Prob. of small (cond on entry) 0.807 0.753 15. R&D to sales (large-old) 0.065 0.037
7. Emp. growth (small-young) 0.104 0.106 16. 5-year Entrant Share 0.369 0.393
8. Emp. growth (small-old) 0.047 0.035 17. Fixed cost-R&D labor ratio 5.656 5.035
9. Emp. growth (large-old) -0.005 -0.005 18. Aggregate growth 0.022 0.022
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B-6 Model with Reallocation Cost

Table B-12: Parameter Estimates

# Parameter Description Value
1. φ Fixed cost of operation 0.201
2. θH Innovative capacity of high-type firms 1.840
3. θL Innovative capacity of low-type firms 1.287
4. θE Innovative capacity of entrants 0.017
5. α Probability of being high-type entrant 0.960
6. ν Transition rate from high-type to low-type 0.300
7. λ Innovation step size 0.134
8. ϕ Exogenous destruction rate 0.038

Table B-13: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.093 0.107 10. Sales growth (small-young) 0.103 0.107
2. Firm exit (small-old) 0.088 0.077 11. Sales growth (small-old) 0.033 0.024
3. Firm exit (large-old) 0.036 0.036 12. Sales growth (large-old) -0.005 -0.003
4. Trans. from large to small 0.020 0.010 13. R&D to sales (small-young) 0.090 0.064
5. Trans. from small to large 0.037 0.014 14. R&D to sales (small-old) 0.058 0.059
6. Prob. of small (cond on entry) 0.841 0.753 15. R&D to sales (large-old) 0.052 0.037
7. Emp. growth (small-young) 0.099 0.106 16. 5-year Entrant Share 0.321 0.393
8. Emp. growth (small-old) 0.033 0.035 17. Fixed cost-R&D labor ratio 4.237 5.035
9. Emp. growth (large-old) -0.005 -0.005 18. Aggregate growth 0.022 0.022
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B-7 Model with Three Types

Table B-14: Parameter Estimates

# Parameter Description Value
1. φ Fixed cost of operation 0.229
2. θH Innovative capacity of high-type firms 1.802
3. θM Innovative capacity of medium-type firms 1.753
4. θL Innovative capacity of low-type firms 1.381
5. θE Innovative capacity of entrants 0.023
6. αH Probability of being high-type entrant 0.105
7. αM Probability of being medium-type entrant 0.855
8. ν Transition rate to low-type 0.215
9. λ Innovation step size 0.134

10. ϕ Exogenous destruction rate 0.036

Table B-15: Model and Data Moments

# Moments Model Data # Moments Model Data
1. Firm exit (small-young) 0.096 0.107 10. Sales growth (small-young) 0.100 0.107
2. Firm exit (small-old) 0.092 0.077 11. Sales growth (small-old) 0.037 0.024
3. Firm exit (large-old) 0.035 0.036 12. Sales growth (large-old) -0.005 -0.003
4. Trans. from large to small 0.021 0.010 13. R&D to sales (small-young) 0.083 0.064
5. Trans. from small to large 0.037 0.014 14. R&D to sales (small-old) 0.063 0.059
6. Prob. of small (cond on entry) 0.849 0.753 15. R&D to sales (large-old) 0.056 0.037
7. Emp. growth (small-young) 0.099 0.106 16. 5-year Entrant Share 0.329 0.393
8. Emp. growth (small-old) 0.038 0.035 17. Fixed cost-R&D labor ratio 4.386 5.035
9. Emp. growth (large-old) -0.005 -0.005 18. Aggregate growth 0.022 0.022
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