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Abstract

We develop a novel methodology to study the dynamics of technology adoption across coun-
tries. We identify changes in “technology” as changes in the productivity of the frontier country
that have a lagged effect on the productivity of the adopting country. A simple calibration
illustrates how the results of the analysis can be used to estimate the differentials in TFP and
TFP growth that are attributable to technology. We illustrate our methodology by studying
the adoption process between Latin America and the Carribean (LAC) countries and the US.
Our analysis suggests an 8 year adoption lag, after which technologies are fully or nearly-fully
adopted; this estimate suggests that technology can account for a productivity gap of 4-10%
(provided that there is full adoption in the long-run), and a TFP growth differential between
0-0.5%. We illustrate that our estimates are consistent both with the timing of the IT revolu-
tion, and with cross-country patent citation data. Finally, we provide a simple theory about the
potential determinants of the measured adoption lags which highlights a possible link between
the static wedges and technology adoption decisions.
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1 Introduction

There is a large and persistent income gap between countries in Latin America and the Caribbean

(LAC) and the United States (US). In the year 2000, average income in LAC was only 23% of

the average income in the US. Total Factor Productivity (TFP) is among the leading factors of

the observed income gap. TFP in LAC, measured as the Solow residual after carefully accounting

for inputs, is about half of that of the US (Caselli [2013]). There are two major potential causes

for this difference in TFP: (a) technological backwardness, and (b) misallocation of resources.1 In

this paper, we focus on the former and assess the contribution of technology to the TFP difference

between LAC and the US.

Identifying the technology component of TFP differences across countries is not straightforward.

Traditionally, the approach has been tracking the prevalence of specific technologies. However, this

approach necessarily assumes a mapping between the prevalence of specific technologies and aggre-

gate productivity. In practice, we do not know the extent to which specific technologies contribute

to TFP. In this paper, we propose a methodology that is agnostic about which technologies are

important. We directly measure technological progress through its effect on TFP. Using time series

methods, we identify a component of TFP growth that is plausibly attributable to technological

progress. The dynamics of technology adoption can be inferred by the timing and the magnitude

in which the technology component affects the adopting country.

To motivate our approach, consider figure 1. The top two figures plot the 9 year moving average

of output growth for the US and for the average of Brazil, Chile and Uruguay (the period between

the beginning of World War I and ending of World War II was omitted2). The bottom two figures

plot the same series, with lagged values of the US data. Low-frequency movements in output growth

in the Latin American countries are more correlated with lagged values of the US; the correlation

increases from 0.3 to 0.7 in the pre-war period, and from -0.07 to 0.5 in the post-war period. This

lagged co-movements may be reflective of lagged technological progress.

Formally, we can exploit lagged co-movement on a higher frequency to identify a technological

component of productivity growth. Our identifying assumption is that any shock to productivity

growth in the frontier country (the US) that affects the adopting countries (LAC) with a lag is a

technology shock. We can then use the technological component to study the effects of a technology

shock on TFP growth in LAC, both in terms of timing and in terms of magnitude.

We focus on the post-war period and use several measures of productivity growth: TFP growth,

measured as the Solow residual with and without human capital; GDP; and value added per

worker in nine broad industries. Our estimates suggest that, compared to the US, technological

improvements have a somewhat more modest long-run effect on productivity in LAC, and that

the bulk of technology adoption happens within 8-10 years. At the upper bound of our confidence

1See Busso et al. [2012] for a study on misallocation and Cole et al. [2005] for a study on the lack of competition
in LAC.

2In our view, the large fluctuations in output per capita growth during this period may have been primarily driven
by non-technology factors.
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interval, our estimates suggest that technologies are fully adopted after 8-10 years,3 and that the

long-run productivity gains from technological progress are the same as in the US. In this case, the

technology gap between LAC and the US is roughly constant over time, and can account for a 4-8%

gap in TFP. At the lower bound of our confidence intervals, technology levels diverge over time,

as technological innovations improve long-run TFP in LAC by only half as much as in the US. In

this case, the TFP gap attributable to technology increases over time, and incomplete technology

adoption generates a differential in TFP growth rates of about 0.25-0.5% annually.

Figure 1: Growth of output per capita (source: Maddison)

(a) Pre-1914. correlation: 0.3
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(b) Post-1948. Correlation: -0.07
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(c) Pre-1914 (US lagged). Correlation: 0.7
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(d) Post-1948 (US lagged). Correlation: 0.5
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Notes: Each point represents the forward 9 year moving average (e.g., the point 1870 is the average growth from 1870-1879).

The mean growth rates are subtracted from the series.

To gauge at the plausibility of our estimates, we look at two additional sources of data: first,

we study the timing of the IT revolution in LAC and in the US. This exercise is particularly useful

since the IT revolution offers a hard-to-find historical case study in which the introduction of a

new major technology influences the economy drastically. A number of papers have studied the

3Compared to the existing estimates in the literature, our findings suggest a relatively modest adoption lags. For
instance, Comin et al. [2006] and Comin and Hobijn [2010] estimate an average technology adoption lag of 45 years
(averaged across many different countries and technologies). One way to reconcile the findings is to note that these
papers look at a simple average of technologies, while our analysis aims to “weigh” technologies by their contribution
to aggregate TFP. Consistent with our results, they find shorter adoption lags for the technologies that we believe
are more essential for the aggregate TFP (Comin and Hobijn [2010] estimates 14 years adoption lags for PCs and 15
years for cell phones).
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drastic impacts of the IT revolution on US productivity. For instance, Greenwood and Yorukoglu

[1997] argue that the IT revolution during the 1970s has been the major factor for the productivity

slowdown during the same period. They document that the IT investment rose dramatically and

aggregate productivity slowed down during mid-70s. While replicating this fact, we also show

that the IT investment in LAC rose and productivity slowed down during mid-80s. These findings

support the 10-year lag of technology adoption between US and LAC.

Second, we study patents registered in the US Patent Office. Patent citations have been widely

used to trace the knowledge flow among firms and countries (among many others, see Jaffe et al.

[1993] and Jaffe and Trajtenberg [1999]). In order to assess the average lag of knowledge flow, we

compute the average number of years that it takes a LAC patent to cite a US patent. Our citation

analysis indicates a 9-year citation lag in IT patents and 10-year citation lag in general which is in

line with the previous findings.

Finally, we provide a simple theory about the potential determinants of the measured adoption

lags which highlights a possible link between the static wedges and technology adoption decisions

and test its implications using our empirical methodology. We test whether our methodology

can produce estimates that are consistent with a simple endogenous growth model, in which the

incentives for technology adoption are decreasing with the level of static production wedges. Using

our calibrated model, we infer a pre-War technology adoption lag that is consistent with pre-war

differences in output per capita. We show that this calibrated adoption lag is consistent with time

series estimates from the pre-war era.

The rest of the paper is organized as follows. Section 2 introduces a conceptual framework to

motivate the main empirical analysis, Section 3 describes the main empirical model and provides

the results, Section 4 shows the robustness of our empirical results by providing various alternative

specifications and employing alternative data series, Section 5 provides supporting evidence for

our main empirical findings based on various data from investment in information technologies

and patent citations, Section 6 provides a simple theory about the potential determinants of the

measured adoption lags, and Section 7 concludes.

2 Conceptual framework

In this section, we introduce the conceptual framework used to motivate the empirical analysis,

and explain the structural interpretation of our estimated parameters.

Consider global environment with n countries indexed i = 1, ..., n. Time is indexed by t =

0, 1, .... Measured total factor productivity (TFP) is given by Ai,t =
Yi,t

F (Ki,t,Li,t,...)
- in other words,

Ai,t is the rate in which the economy transforms aggregate inputs into aggregate output.

We assume that measured aggregate TFP can be decomposed as:

Ai,t = Xi,tZi,t (1)

where Xi,t is the technology component of TFP (which we will refer to simply as “technology”)
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and Zi,t is the non-technology component of TFP. To be precise, it is useful to refer to the Oxford

Dictionary definition of technology, which is “the application of scientific knowledge for practi-

cal purposes, especially in industry”. In other words, technology captures the extent to which

production units follow best practices in efficiently transforming inputs into outputs.

The non-technology component, Zi,t, is a catch-all phrase that includes all aspects of the econ-

omy that affect measured TFP, excluding technology. For example, Zi,t includes misallocation,

competition, as well as policies that may distort the efficient use of factors. Importantly, Zi,t also

includes factors that may affect measured TFP, such as incomplete capacity utilization during re-

cessions, which may be difficult to account for in the measurement of inputs (see Basu [1996]).

Finally, Zi,t may also include a measurement error.

Measured TFP is assumed to be multiplicative in technology and non-technology components.

To motivate this assumption, it is useful to think of an environment with heterogeneous firms, in

which all firms share the same technology, but inputs may be misallocated across firms, or not used

at full capacity. It is easy to see that such a model will imply a multiplicative structure of measured

TFP (for the case of misallocation, see the model in Hsieh and Klenow [2009]).

Growth rates are denoted with lower case letters (e.g., ai,t = ln(Ai,t) − ln(Ai,t−1)). Given the

multiplicative structure, the growth rate of measured TFP takes an additive form:

ai,t = xi,t + zi,t (2)

where xi,t is the growth in the technology component of TFP (which we will refer to simply as

“technology growth”) and zi,t is the growth in the non-technology component (which will be referred

to as “non-technology growth”). It is important to note that, empirically, non-technology factors

may have significant effects both on the level of measured TFP (e.g., Hsieh and Klenow [2009]) and

on its growth rates (as in Basu [1996], Basu and Fernald [2002] or Shapiro [1987]).

Technology adoption. There is one country that is identified as the frontier, and the rest of the

countries are identified as adopters. We will denote the frontier economy i = us and the adopting

countries with i = lac (where, in principle, different adopting countries may be given different

sub-indexes). Technology growth in the frontier represents the growth of the frontier technology.

In adopting countries, a technological innovation may affect TFP growth with some lag, reflecting

the possibility of learning and adoption frictions. Thus, current technology growth in adopting

countries is a function of current and lagged values of the technological progress in the frontier

(e.g., growth in LAC today may reflect technological innovation in the US several years ago, as the

technology is adopted with some delay). We assume that this function takes the following linear

form:

xlac,t =
∞∑
j=0

λjxus,t−j (3)
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where λj ≥ 0, ruling out the possibility that technological progress in the frontier has a negative

effect on technology growth in adopting countries.

Note that the sum
∑∞

j=0 λj has the interpretation of the long-run adoption rate: an innovation

in the technological frontier today will have a contemporaneous effect of λ0, an effect of λ1 in the

next period, and so one. The infinite sum
∑∞

j=0 λj is the total growth in the adopter’s technology

implied by a 1% growth in the technological frontier.

The technology gap. In what follows, we will aim to identify the sequence {λj}∞j=0 using time

series methods (to be discussed shortly). It is useful to show how these parameters can be used to

estimate the differences in TFP or TFP growth that are attributable to technology. Let x̄ = E(xus,t)

be the mean growth rate of the technological frontier. The average growth rate in the adopting

country is then given by:

x̄lac = E(
∞∑
j=0

λjxus,t−j) = x̄
∞∑
j=0

λj (4)

Thus, the technology growth rate differential is given by:

E(xus,t − xlac,t) = x̄(1−
∞∑
j=0

λj) (5)

Given x̄ and {λj}∞j=0, we can calculate the difference in TFP growth that is attributable to different

rates of technological progress using the expression above.

In terms of technology levels, using the identity Xi,t = Xi,0e
∑t

τ=0 xi,τ , under the assumption

that Xus,0 = Xlac,0
4 the technology level gap evolves according to:

E(ln(
Xus,t

Xlac,t
)) = E(

t∑
τ=0

(xus,τ − xlac,τ )) = E(

t∑
τ=0

(xus,τ −
τ∑

j=0

λjxus,τ−j)) (6)

= x̄(
t∑

τ=0

(1−
τ∑

j=0

λj)) →t→∞ x̄(
∞∑
τ=0

(1−
τ∑

j=0

λj))

Using the expression above, we can calculate the difference in TFP levels that is attributable

to technology as a function of x̄ and {λj}∞j=0.

It is useful to distinguish between three cases: if
∑∞

j=0 λj < 1, technologies are never fully

adopted; an innovation in technology has a smaller long-run effect on TFP in the adopting country

than in the frontier country. In this case, incomplete technology adoption generates a growth-rate

differential, as technology levels diverge over time. The ratio of technology levels in equation 6

converges to ∞.

If
∑∞

j=0 λj = 1, technologies are fully adopted in the long run, and the average rate of tech-

nological progress in the adopting country is the same as in the frontier. Technology levels move

4In this context, t = 0 represents an arbitrary date, in which all people shared the same technology (for example,
pre-historic man in Africa).
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in tandem; given any lags in technology adoption (λ0 < 1), the average technology gap in equa-

tion 6 converges to a positive and finite level. It is easy to see that, in this case, the technol-

ogy gap is increasing with the time to full adoption. Formally, for any {λ1,j , λ2,j}∞j=0 such that∑∞
j=0(λ1,j , λ2,j) = (1, 1) and

∑t
j=0 λ1,j ≥

∑t
j=0 λ2,j for all t, the average technology gap implied

by {λj,1} is smaller than the average technology gap implied by {λj,2}. In this case, we can use

estimates of {λj} to estimate the gap in TFP levels that is attributed to differences in technology,

using the formula in equation 6.

Finally, if
∑∞

j=0 λj > 1, average technology growth is higher in the adopting country than in the

frontier country. While it may be possible to come up with specific examples in which technologies

have larger long-run effects on TFP in adopting countries (for example, if a certain technological

innovation is particularly complementary to the factors of production that are abundant in the

adopting countries), it seems unlikely that this will be true for the “average” technology. We

therefore restrict parameters to satisfy
∑∞

j=0 λj ≤ 1.

To summarize, given an average rate of technological progress at the frontier (x̄), marginal

adoption rates {λj}∞j=0 provide sufficient statistics for estimating the average growth differential

between the frontier and adopting economies that is attributable to technological progress. In the

case of full adoption in the long run (
∑∞

j=0 λj = 1), we can also back out the average TFP level

gap that is attributable to lags in technology adoption.

3 Baseline specification

To estimate the marginal adoption rates {λj}∞j=0, we would like to exploit co-movements between

technology growth in the adopting countries (LAC) and technology growth in the frontier country

(the US). Of course, the problem is that technology growth is not directly observable. Instead,

we observe only measured TFP growth (for example, the growth of the Solow residual or some

other measure of productivity). We therefore need to impose further structure on the processes of

technology and non-technology growth, and make some identifying assumptions that allow us to

use co-movements in measured TFP growth for this purpose.

Our model of technology adoption suggests a natural identification strategy: while non-technology

shocks (e.g., demand shocks) may be contemporaneously correlated across countries, technology

shocks are likely to have a lagged effect on TFP growth in the adopting countries. We can therefore

identify shocks to technology in the frontier as shocks that have lagged effects on measured TFP

in adopting countries.

Since our main concern is with the long-run impact of technology (the infinite sum
∑∞

j=0 λj),

and since technology may impact TFP in adopting countries with potentially long lags, we impose

a parametric restriction on the sequence {λj}∞j=0, that allows us to obtain estimates for the entire

sequence by estimating just a finite number of parameters. Specifically, we assume that the sequence
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{λj} takes the following discrete Normal form:

λj = p1 exp(−
(j − p2)

2

p3
) (7)

where p1, p2, p3 ≥ 0. We believe that this restriction allows for sufficient flexibility in the adoption

process. Importantly, the value p1 = 0 embeds the case of no technology adoption, as λj = 0 for

all j. In general, p1 plays a role in determining the level of adoption. The parameter p2 controls

the “peak” of the adoption process: if p2 = 0, marginal adoption rates are decreasing over time; if

p2 > 0, marginal adoption rates are increasing initially and start declining after p2 periods. Finally,

p3 controls the dispersion of the adoption process. Larger values of p3 imply that adoption takes

place during a longer period of time; a smaller p3 would imply that adoption is more concentrated

in a few “peak” years around p2. Figure 13 in the appendix presents several examples of adoption

processes that follow a discrete-Normal distribution.

We estimate the following model:

aus,t − āus = (zus,t − z̄us) + (xt − x̄) (8)

alac,t − ālac = (zlac,t − z̄lac) +

∞∑
j=0

λj(xt−j − x̄) (9)

zi,t − z̄i = ρi(zi,t−1 − z̄i) + νi,t (10)

xt − x̄ = α(xt−1 − x̄) + ϵt (11)

 νust

νlac,t

ϵt

 i.i.d

∼ N(0,Ω) Ω=

σ
2
us,us σ2

us,lac 0

σ2
lac,us σ2

lac,lac 0

0 0 σ2
x,x


| α |, | ρus |, | ρlac |< 1

λj = p1 exp(−
(j − p2)

2

p3
) (12)

p1, p2, p3≥0,
∞∑
j=0

λj≤1 (13)

Two notes are in order. First, note that both zi,t and xt are specified as AR(1) processes. The

distinguishing feature of xt is its lagged effect on measured TFP growth in the adopting countries:

while shocks to zi,t may be persistent and contemporaneously correlated across countries, shocks

to zus,t have no lagged effect on alac,t.

Second, note that we assume the independence of xt and zi,t. Formally, our assumption is

that shocks to technology have no effects on demand or capacity utilization. This assumption is
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obviously problematic, as there is evidence suggesting that technology shocks may affect capacity

utilization (either negatively, as in Basu et al. [2006], or positively, as in Greenwood et al. [1988]).

However, it is worth noting that this independence assumption can be relaxed, provided that the

effect of technology shocks on non-technology components of TFP is the same across countries. See

Appendix A for details.

We estimate the model’s parameters using a maximum likelihood estimation procedure, which

is detailed in Appendix B. We assess the uncertainty regarding our parameter estimates by con-

structing 90% confidence intervals using a bootstrap methodology, also detailed in the Appendix.

Data. We measure aggregate TFP as the Solow residual. Following Caselli [2005], TFP is com-

puted as follows: y = TFPkαh1−α where y and k are output and capital per worker (i.e. y = y/L

and k = K/L) and α = 1
3 . K is calculated from the investment series at the Penn World Table,

with the depreciation rate of 6% per year. ht represents human capital. Also following Caselli

[2005], h is defined as h = eϕ(a) where a is the average years of schooling, and ϕ(s) is a piecewise

linear with slope 0.13 for s < 4, 0.10 for 4 < s8, and 0.07 for 8 < s. Output, investment and labor

force data are from the Penn World Table. Data on average years of schooling are from Barro and

Lee [2001]. As alternative specifications, we also consider the Solow residual without consideration

of human capital (by setting h equal to 0), or simply real GDP. Data are available at an annual

frequency from 1960 to 2009.

The frontier economy is specified as the US. We begin by specifying a single adopting “country”,

which is a GDP-weighted average of LAC countries.

3.1 Results

Figure 2 presents the estimation results. The left panel represents the estimated marginal adoption

rates (λj), and the right panel represents the estimated cumulative adoption rates (
∑t

j=0 λj). The

estimation suggests that the bulk of technology adoption happens at an 8 year lag. The point

estimate suggests that technological innovations in the frontier have a somewhat smaller effect on

productivity in LAC: the point estimate of the infinite sum
∑∞

t=0 λj is about 0.8, suggesting that

a 1% improvement in technology in the US increases long-run productivity in LAC by only 0.8%.

However, it is important to note that the 90% confidence interval cannot reject full adoption in

the long run (and in fact, after 8 years). In this case, technological innovations in the US have the

same effect on TFP in LAC, with an 8 year lag.

Figure 14 in the appendix presents the baseline estimation results in which alternative series are

used. Rather than using our preferred constructed TFP series, we consider two alternative series

for measured TFP: (a) TFP without taking account of human capital, and (b) GDP. The results

are broadly consistent with those presented here, with point estimates suggesting a similar 8-year

lag. However, it should be noted that, when using the simple Solow residuals, the point estimates

suggest full adoption in the long run (which also falls within the 90% confidence intervals here).
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Figure 2: Estimated marginal and cumulative adoption rates in the baseline

(a) Marginal adoption rates
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(a) Marginal adoption rates
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(b) Cumulative adoption

Measured TFP growth is constructed as the growth of the Solow residual (with consideration of human capital), at an annual

frequency. The “frontier country” is the US, and the “adopting country” is a GDP-weighted average of LAC countries. Dotted

lines represent the bounds of the 90% confidence intervals.

3.2 The contribution of technology to the TFP gap and the TFP growth gap

Using equations 5, we can derive the implications of our empirical estimates for the contribution

of technology to differences in TFP growth. At the upper bound of our confidence interval, tech-

nological progress has the same long-run effect on TFP in LAC and in the US. With
∑∞

j=0 λj = 1,

the growth differential in equation 5 collapses to 0.

At the bottom end of our confidence interval,
∑∞

j=0 λj ≈ 0.5. In this case, the TFP growth gap

is given by 0.5x̄. If we assume that technological progress grows at about x̄ = 0.5% annually (which

is the average growth rate of TFP in the US in our sample),5 the upper bound of the growth rate

differential generated by incomplete technology adoption is 0.25%. For x̄ = 1% (which is consistent

with later observations of TFP growth), the technology growth gap is about 0.5%.

For the case
∑∞

j=0 λj = 1, the TFP gap converges to a constant in the long run. At the upper

bound of our confidence interval, cumulative adoption is approximately 0 up to j = 8 and 1 for

j > 8. Plugging in these numbers into equation 6, the technology component of the TFP gap is

given by:

x̄

∞∑
τ=0

(1−
τ∑

j=0

λj) ≈ x̄

8∑
τ=0

(1− 0) = 8x̄ (14)

For x̄ = 0.5%, the TFP gap attributed to technology is 4%; for x̄ = 1%, the TFP gap attributed

to technology is 8%.

5This estimate is conservative in our context, as it assumes that non-technology factors had no role in long-run
TFP growth in the US throughout the period in question.
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(b) Cumulative adoption

(a) Marginal adoption rates

Figure 3: Estimated marginal and cumulative adoption rates, without imposing
the discrete-Normal assumption on the distribution of marginal adoption rates.
Measured TFP growth is constructed as the growth of the Solow residual (with
consideration of human capital), at an annual frequency. The “frontier country”
is the US, and the “adopting country” is a GDP-weighted average of LAC countries.
Dotted lines represent the bounds of the 90% confidence intervals.

4 Alternative specifications

This section presents several alternative empirical specifications. First, we relax the discrete

Normal assumption and consider an unrestricted specification with a finite number of positive

marginal adoption rates. Second, we consider alternative identification strategies, that exploit the

co-movements of measured TFP growth in LAC with measured TFP growth in the US at vari-

ous frequencies. Finally, we estimate the model on alternative series, that provide estimates of

technology diffusion by country and by industry.

4.1 Relaxing the discrete-Normal assumption

Given that the baseline estimation suggests that the bulk of technology adoption happens within

the first 10 years, we relax the discrete-Normal restriction on the sequence {λj}∞j=0 and estimate an

unrestricted sequence of marginal adoption rates, allowing for up to 12 positive lags. The results

are presented in figure 3. The results obtained from using the alternative aggregate series (the

Solow residual without consideration of human capital and GDP) are presented in figure 15 in the

appendix.

Similar to our baseline specification, the unrestricted estimation suggests that the bulk of tech-

nology adoption occurs with an 8 year lag, and that full adoption in the long run cannot be rejected.

In fact, the point estimates suggest full adoption after 12 years, with a tight 90% confidence interval

of [0.9, 1].

However, contrary to our discrete Normal assumption, the unrestricted estimation suggests two

adoption peaks: the smaller of the two occurring with a 1-2 year lag, and the larger occurring with
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roughly an 8 year lag. While the first peak may be evidence of some contemporaneous adoption,

there is a concern that this may reflect business cycle dynamics associated with the technology

shock in the US. For example, a technology shock in the US may generate demand for materials

supplied from LAC, which may translate into a (non-technology) increase in measured productivity

in LAC. In light of this concern, we view the discrete Normal specification as the more conservative

approach, as it effectively leaves out the potential contemporaneous spillovers of technology, which

may be of cyclical nature.

4.2 Alternative identification strategies

As robustness checks, we consider alternative ways of identifying the sequence of marginal adoption

rates, using co-movements between measured TFP in LAC and different frequencies of lagged

measured TFP growth in the US. We impose the discrete-Normal parameterization of {λj}∞j=0 and

consider several alternative identifying assumptions:

Orthogonality of zus,t and zlac,t at an annual frequency (annual growth rates strategy).

Under the assumption that non-technology shocks are uncorrelated in LAC and in the US at all

leads and lags, lagged comovements in measured TFP reflect lagged comovements in technology.

Note that this identification does not require that any movement in TFP reflects movements in

technology; rather, it requires that any movement in the non-technology component of TFP in the

US is independent from movements in the non-technology component of TFP in LAC.

This assumption is likely to be violated if movements in TFP at an annual frequency have a

strong demand component: domestic demand shocks are likely to generate demand for foreign goods

as well, and thus boost demand abroad, generating a natural contemporaneous comovement of the

non-technology components of TFP (due, for example, to comovements in unobserved capacity

utilization). The identifying assumption is therefore that movements in demand play a limited role

in the growth of measured TFP at an annual frequency.

Orthogonality of the trend components of zus,t and zlac,t (HP filter trend strategy).

Given the potential role of demand shocks in generating TFP fluctuations at an annual frequency,

we consider a more conservative specification that, rather than using annual growth rates, uses

the HP filtered trends of measured TFP growth. As long as demand-driven growth in measured

TFP is relatively transitory, it will be smoothed out by the HP filter trend. The non-technology

component of the HP-filter trend in measured TFP growth is likely to reflect deeper structural

changes, such as changes in misallocation, competitiveness, etc. While it is always possible to come

up with transmission mechanisms generating comovements in these non-technology components,

there is no strong a-priori reason to believe that this is the case. This identification is in the spirit

of Blanchard and Quah [1989], who, in a structural VAR analysis, identify technology disturbances

as shocks that have a long-run effect on labor productivity.
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Orthogonality of the cycle components of zus,t and zlac,t (HP filter cycle strategy).

While subject to the same critiques as the first strategy (the possibility of demand shocks), this

strategy is a useful robustness check as it is assesses whether our results are robust to the exclusion

of trends. The inclusion of trends may, in principle, generate spurious correlation between lagged

movements in measured TFP in the US and movements in measured TFP in LAC.

We estimate the parameters p1, p2 and p3 using maximum likelihood estimation, and produce

90% confidence intervals for the marginal and cumulative adoption rates (λj and
∑t

j=0 λj) using a

bootstrap procedure. To execute our alternative identification strategies (the annual growth rates

strategy, the HP filter trend strategy and the HP filter cycle strategy), we estimate the parameters

p1, p2 and p3 using the following equation:

alac,t =

n∑
j=0

λj x̂t−j + zlac,t =

n∑
j=0

p1 exp(−
(j − p2)

2

p3
)x̂t−j + zlac,t (15)

Where alac,t is annual measured TFP growth in LAC and x̂t is a proxy for technology growth in

the US which, depending on the identification strategy, is either annual growth rates of measured

TFP in the US, the HP filter trend component of measured TFP growth in the US or the HP filter

cycle component of measured TFP growth in the US. Note that the condition for unbiased OLS

estimates is that the error in x̂t−j is uncorrelated with zlac,t. In this context, the error in x̂t is

precisely zus,t (with the relevant filtering), consistent with the identifying assumptions underlying

the analysis.

The results are highly consistent with our baseline specification, and are presented in figure 16.

This confirms that our results are not driven by a particular frequency of the data (either the trend

or the cycle).

4.3 Alternative series

Instead of assuming one LAC “country” (which is a weighted average of countries in the region),

we conduct the analysis by (a) including each country in LAC as a separate adopting country, and

(b) estimating the marginal adoption rates by industry. These extensions allow for the sequence

of marginal adoption rates to differ across countries and across industries. However, while there is

some variation in the results, they broadly confirm the findings on the aggregate level.

Country-level estimation. To estimate the country-level adoption lags, we estimate a richer

model that includes one frontier country (the US) and 19 adopting countries, corresponding to

countries within the LAC region. Given the large increase in the number of parameters (as we

must estimate 19 different sequences of marginal adoption rates), we simplify the model by imposing

that the non-technology component of measured TFP growth is an i.i.d process (rather than an

AR(1) process). We also confirm that the baseline results (with the LAC aggregate) do not change

much when we impose this alternative assumption on the stochastic process of the non-technology
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component.

The results are presented in figure 17 in the appendix. The results are highly consistent with

those obtained with the LAC aggregate. For most countries in LAC (12 out of 19), the point

estimates suggest full adoption of technologies after 8 years at most. While there is some variation

across countries, the variation is not statistically significant in the sense that full adoption after 8

years is within the 90% confidence interval for all countries in our sample.

Industry-level estimation. At the industry level, we proxy measured productivity growth with

growth in value added per worker by industry, using the value added in constant prices from the

Groningen Growth and Development Centre 10-sector database for LAC countries and the US.

Note that for LAC countries, only 9 sectors are available. Data is available from 1950- 2005. We

estimate the baseline model for each industry separately, using a LAC weighted average in which

weights are given by real value added in each industry.

The results are presented in figure 18. Broadly, the results at the aggregate level are consistent

with the industry-level results, in the sense that full adoption within 12 years (as well as 0.8 long-run

adoption) fall within the confidence intervals of each of the industry-level results. However, there

is some interesting variation across industries, both in the point estimates and in the confidence

intervals. For example, manufacturing - a sector which is widely viewed as a ”fast” adopter -

delivers point estimates suggesting full adoption after 8 years, with a relatively tight confidence

interval. Mining, a sector with significant foreign presence, seems to exhibit faster adoption, with

the bulk of adoption occurring at a 1 year lag (however, it should be noted that the magnitude of

long-run adoption is rather imprecisely estimated, though statistically significant).

The agriculture sector, which has been the focus of many studies relating to technological

differences across countries, exhibits slower adoption, with full adoption taking place only after 12

years, if at all. In fact, the point estimate suggest that long-run adoption is about 0.5. This is

consistent with the finding that productivity differences in agriculture are larger than productivity

differences in other sectors (see, for example, Caselli [2005] and Restuccia et al. [2008]).

Finally, the estimation delivers very wide confidence intervals for the government and service

sectors (finance, public utility and community, social and personal services which includes the

government sector). For these industries, both full adoption and no adoption (or close to no

adoption) are within the 90% confidence interval.

5 Supporting Micro Evidence

In this section, we support our finding using two sources of data: the first is data on information

technology (IT) investment, that illustrates an 8-9 year lag in IT investment in LAC relative to the

US. The second is patent citation data, that illustrates that patents issued in the US are cited in

LAC with an 8-9 year lag.
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5.1 Technology-level evidence: the case of IT

Information technology has been one of the most influential technological innovations in the last

fifty years. In this section, we present evidence suggesting that information technology was adopted

in Latin America within 10 years of its adoption in the U.S. In particular, we establish that

telecommunication investment in LAC took off around the mid-1980s, about 10 years after it

took off in the US. In addition, we document that internet coverage in Latin America lags 10 years

behind the U.S.

It is difficult to know precisely when information technology was first introduced in Latin Amer-

ica, because obtaining historical data on information technology is difficult. We can only obtain

historical investment data on telecommunication. The data are from the World Telecommunica-

tion/ICT Indicators Database. The analysis shows that growth in Telecommunication Investment

in Latin America took off indeed in the mid-1980s.

We focus on telecommunication investment per capita. In Figure 4 we show the telecommu-

nication investment per capita in Latin America, in real 2005 U.S. dollars 6. The graphs suggest

that telecommunication investment in Latin America took off around 1986. This is about 10 years

after telecommunication investment in the U.S. took off in the mid-1970s.7

We also construct the levels of the telecommunication capital stock for the U.S. and Latin

America by adding up investment (and assuming capital depreciates at a rate of 6% a year). Figure

5 shows the LAC-US ratios of telecommunication capital level per capita and of the aggregate

capital level per capita8. We can see that the LAC-US ratio of telecommunication capital stock

gradually rises and eventually converges to and tracks the ratio of aggregate capital stock. In

our view, this suggests full adoption of telecommunication technologies, as the gap in the stock of

telecommunication-related capital is fully accounted for by the capital gap.

We proceed with the analysis of internet coverage. We obtain the data on percentage of pop-

ulation using the internet from the World Telecommunication/ICT Indicators Database. We then

construct the LAC-wide measure of percentage of population with access to the internet. As illus-

trated in Figure 6 internet coverage in Latin America lags that of the U.S. within 10 years: the

first 1% of LAC population had access to the internet in 1998, 7 years after the first 1% in the U.S.

Similarly the first 10%, 20% and 30% of LAC had access to the internet within 10 years after U.S.

After that, the internet coverage levels in LAC and the U.S. seem to move along its steady state

paths, and the gap between the two levels persists.

5.2 Patent-level evidence

We now turn to the patent level analysis. Earlier studies of knowledge flows have used patent

citations as an indicator of knowledge flows from more advanced countries to developing countries

6Due to unavailable data, telecommunication investment is interpolated between 1966-1969 and 1971-1974 from
the data points at 1965, 1970 and 1975.

7See Greenwood and Yorukoglu [1997] for a detailed discussion on the growth in IT investment in the US during
the 1970s.

8The aggregate capital levels are calculated from investment data obtained from the Penn World Table
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Figure 4: Real Telecom Investment per capita, Latin America average (2005 US
dollars). Annual data starting from 1975 onward. Data between 1965,70,75 ex-
trapolated.
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(see for instance, Jaffe et al. [1993] and Jaffe and Trajtenberg [1999]). We follow this literature by

studying the citation lags between LAC and US inventors. In particular, we compute the average

time that it takes for a LAC inventor to cite a US inventor.

The data we are using for this analysis comes from the USPTO/NBER Patent Database Project

(PDP). The full dataset contains more than 3 million patents registered from all over the world

between 1976-2006. This dataset contains information on:

• the patent number,

• the country of the primary inventor,

• the year of application of the patent, and

• the identity of the patents that are cited by the current patent (cited-citing pairs).

For our purpose, we focus on patents that are invented in LAC and cite a patent invented in

the US. Truncation is an important concern when studying the citations: A 1976 patent has 30

years to receive a forward citation as opposed to a 2005 patent which had only 1 year to receive a

forward citation. Since the majority of the citations are done within the first 7 years, we restrict

our attention to the US patents that have been applied between 1976-1996. This way, we leave at

least a 10-year window for each patent to receive citations. We identify more than 5,000 patents

that satisfy this criteria. Table 1 reports the detailed patent counts by industries.

Table 1: LAC patents that cite a US patent (by industry)

Industry Count %

Chemicals 1,578 31.0
Comp & Comm 191 3.8
Drugs 546 10.7
Electronics 416 8.2
Mechanical 926 18.2
Others 1,440 28.3

TOTAL 5,097 100.2

Figure 7 presents the distribution of citation lags by each industry. Interestingly, our main

finding in this section is that the mean citation time between a LAC and US patent in IT (Computers

and Communications) is 8.7 years. This is very much in line with our earlier findings. The average

citation lags in the remaining sectors vary between 9.36 years (drugs) and 11.52 years (electrical

and electronics).

5.3 Contrasting with Comin and Hobijn [2010]’s results for Latin America

Comin and Hobijn [2010] use data on the diffusion of 15 technologies in 166 countries over the

last two centuries to show that in general countries take a long time to adopt new technologies:

on average, countries have adopted technologies 45 years after their invention. However there is
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substantial variation across countries and technologies. This section shows replicated results for

the U.S. and Latin America countries. Table 3 in the Appendix shows the average adoption lags
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for the U.S., Latin America and all countries. Overall, there is no substantial difference in adoption

lags between Latin American countries and the rest of the world. However, for recent and arguably

more important technologies such as personal computers (PCs) or internet, the adoption lags are

much smaller. For Latin America, the adoption lag for PCs is 15.5 years, and that for internet is

8.7 years. Considering that the U.S. takes 7.7 years to “adopt” PCs and 4.4 years to “adopt” the

internet, Latin America is 7.8 and 4.3 years behind the U.S., respectively. Those numbers are in

line with our results.

6 Application: Static Wedges and Technology Adoption

In this section, we provide a simple theory regarding the potential determinants of the measured

adoption lags and the income gap between the US and Latin America over the 20th century.

In particular, we analyze the impact of static wedges (which corresponds to Zt in our previous

notation in expression (1)) on income differences, taking into account its potential effect on the

optimal technology adoption decision. One potential interpretation of these wedges, among other

possibilities, is the misallocation of production factors in the economy, which has received vast

attention from recent literature (Hsieh and Klenow [2009, 2014], Restuccia and Rogerson [2008]).

6.1 Income Dynamics over the 20th Century

Figure 8: Log GDP Per Capita over Time
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Figure 9: Income Difference over Time
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Notes: Figure 10 plots the log GDP per capita over time. LAC is defined as the weighted average of Argentina, Bolivia, Brasil,

Chile, Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Honduras, Jamaica, Mexico, Panama,

Paraguay, Peru, Trinidad Tobago, Uruguay, and Venezuela. Figure 11 plots the income per capita gap between the US and LAC.

Figure 10 documents a well-known income gap between the US and LAC. Figure 11 zooms into

this gap and reveals two interesting observations. First, there seems to be an obvious structural

break before and after the second world war. Second, within each subperiod, there is no obvious
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trend in the income gap. Third, the average income gap has increased from 1.21 to 1.44 during

this period.

The second observation suggests that within each period, full adoption (i.e.,
∑∞

j=0 λj = 1) seems

to be consistent with the time-series data. The first observation then suggests that the technology

adoption lags might be different between those two periods.

Our next goal is to interpret this fact through our estimates and identify the channels through

which static distortions could affect the widening of this gap. We start our analysis by restating

equation (1):

Ai,t = Xi,tZi,t (16)

where we interpret Zi,t as the time-dependent static wedges. Since our attention is mainly on the

technology part, for the sake of our analysis, let us assume that both countries use the same level

of inputs such that

Fus,t (.) = Flac,t (.)

where F stands for the aggregate inputs in the production function Yi,t = Xi,tZi,tFi,t (.).

To understand the underlying possible mechanism behind these shifts, we first decompose the

income differences as

ln

(
Yus,t
Ylac,t

)
= ln

(
Xus,t

Xlac,tZlac,t

)
= ln

(
Xus,t

Xlac,t

)
− ln (Zlac,t) (17)

where we abstract from capital and normalize Zus,t = 1. Since Figure 11 shows mainly a level

difference between the two periods, this can be driven by either a change in technology adoption

lags or a change in the level of wedges or both. For the rest of our analysis we will rely on

economic theory and utilize a tractable endogenous technical change model to shed light on these

possibilities. The model will relate the speed of technology adoption to static wedges and give us

a unique prediction for the composition of the observed change in income differences.

6.2 Model

Consider the following setup. In each country, a unique final good, which also serves as numéraire,

is produced competitively using a continuum of intermediate inputs according to

Yit = Lα
it

∫ 1

0
Xα

ijty
1−α
ijt dj

where Xijt is the productivity in country i sector j at time t, yijt is the flow of intermediate good

j used in general good production again at time t, and α ∈ [0, 1]. Labor is fixed at some Li = L.

Each variety is produced by a monopolist. The marginal cost of producing each variety is τiptηi

in terms of the final good, where ηi > 0 and τipt ≥ 1 is the static wedge in the economy, which
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increases the marginal cost of production above its social level. The higher is τipt the lower is the

production efficiency of the economy for any given technology level Xijt.

6.2.1 Static Problem

Now we are ready to solve for the static production decision. For notational tractability, we will

drop the time and country indices when it causes no conflict. The demand with respect to j is

(1− α)LαXα
j y

−α
j = pj (18)

where pj is the price of variety j. Then the monopolist’s problem is

πj = max
yj

(pj − τpη) yj subject to (18) .

This maximization problem delivers

[
(1− α)2

τpη

] 1
α

LXj = yj

We normalize η ≡ (1− α)2 for simplicity. Hence the equilibrium quantity and price can be expressed

as

yj = τ−1/α
p XjL, and pj = (1− α) τp.

Moreover, the aggregate output and profits are simply

Y = XZL, (19)

and

πj = ΠXjZ,

where Xt ≡
∫ 1
0 Xitdi is the average technology and Z ≡ τ

α−1
α

p is the transformed static wedge term

and Π ≡ (1− α)αL is a constant. Note the resemblance between expressions (19) and (1) .

6.2.2 Technology Vintages and the World Knowledge Frontier

Let us denote the world technology frontier by X̄
(
N̄
)
where X̄ is the knowledge stock at the frontier

after having adopted the N̄ th vintage technology. We assume that the world technology frontier

evolves through new vintages (generations) of technologies which we index by N̄ . For simplicity,

every period, the frontier receives a new generation technology such that

N̄t+1 = N̄t + 1. (20)
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The N̄ th generation technology produces a growth rate of λN̄ at the frontier such that

X̄t+1

X̄t
= 1 + λN̄ .

6.2.3 Technology Adoption

The follower country (the LAC region in our case) adopts technologies from the frontier. There is

a mass of entrepreneurs that live for one period. In each period, a randomly selected entrepreneur

is assigned to product line j. This entrepreneur has the option of adopting the knowledge stock

from the frontier, in which case the productivity in j can increase from Xj (N) to

X̂
(
N̄ ,N

)
≡ X (N)

∏N̄

k=N
(1 + λk) .

This expression implies that when the technology adoption is successful, the knowledge stock in j

will improve by the respective growth rates of all the vintages between the current vintage N and

the frontier vintage N̄ .

Let us denote the endogenous probability of technology adoption by µj in sector j. The en-

trepreneur pays the technology adoption cost γ
µ2
j

2 X̂
(
N̄ ,N

)
in terms of the final good and in return

becomes the monopolist for one period with probability µj or gets nothing with the remaining

probability 1−µj . Note that the costs are proportional to the level of the technology to be adopted

X̂
(
N̄ ,N

)
: If the technology to be adopted is more advanced, the cost of adopting it is also higher.

This simply removes any artifical scale effect problems. Then the maximization problem can be

stated as

max
µj

{
µjΠZX̂

(
N̄ ,N

)
− γ

µ2
j

2
X̂
(
N̄ ,N

)}
.

The first order condition is simply given by

µj = µ =
ΠZ

γ
. (21)

Note that the incentives for technology adoption is increased by equilibrium profits. We have proved

the following result:

Lemma 1 Technology adoption incentives are decreasing in the level of static wedges τ (and in-

creasing in Z).

Now we can express the law of motion of the vintages in LAC as a function of their endogenous

adoption rate:

Nt+1 = µN̄t + (1− µ)Nt (22)

where next period’s vintage is simply the frontier vintage of the last period with probability µ and

remains unchanged with probability 1 − µ. If we define the distance to the world vintage frontier
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by

nt ≡ N̄t −Nt, (23)

we can express (22) as

Nt+1 − N̄t+1 = µ
[
N̄t −Nt

]
+Nt − N̄t+1 + N̄t − N̄t

which then translates into

nt+1 = 1 + (1− µ)nt

where we used (20) and (23) and µ is given in (21). This expression implies that the next period’s

distance to the world frontier is a negative function of the technology adoption probability µ. If the

entrepreneurs are more aggressive in their technology adoption efforts, the gap between the frontier

and LAC will close. Note that this is a convergent sequence where in the long-run

lim
t→∞

nt = n∗ =
1

µ
=

γ

ΠZ
, (24)

Figure 10: Law of Motion of nt
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Proposition 1 In the long-run, the distance to the world knowledge frontier is positively affected

by the static wedge τp (and negatively affected by Z).

Our model generates an interesting prediction, a feedback from the static wedges to the dynamic

technology adoption incentives. If the wedges become larger (lower Z), the dynamic incentives are

worsened (lower µ), which then increases the equilibrium distance to the technology frontier n∗.

In the long-run, if the average growth rate of the frontier is λ, equation (17) can be written as

ln

(
Yus
Ylac

)
= ln

(
(1 + λ)n

∗
Xlac

Xlac

)
− ln (Zlac)

= n∗ ln (1 + λ)− ln (Zlac)
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Combining this last expression with (24) we get

ln

(
Yus
Ylac

)
=

γ ln (1 + λ)

ZlacΠ
− ln (Zlac) . (25)

Several important observations are in order. First, this expression uniquely maps the static

misallocation into the observed income difference in the data. Using post-war ratios of income

per-capita, together with our post-war estimates of the static misallocation, we can calibrate the

ratio γ
Π ; then, we can use this ratio together with pre-war differences in income to calibrate the

pre-war static distortion.

Second, this expression shows that the static misallocation not only has a well-known direct

effect on the income difference, but also a indirect effect through its impact on technology adoption

lags. This is mainly due to the fact that higher static misallocation lowers the return to technology

adoption which, in turn, increases the equilibrium adoption lags.

Proposition 2 Assume ln(Yus/Ylac) > γ ln(1+λ)
Π Then there exists a unique static misallocation

Zlac < 1 such that (25) holds. Moreover, Zlac and Yus/Ylac are negatively correlated.

6.2.4 Bringing the Model to the Data

Our simple model generates the following prediction. If the change in output per-capita was caused

by an increase in static misallocation, it should have been accompanied by an increase in technology

adoption lags. Figure 12 depicts the negative relationship between the two.

Figure 12: Static Wedges vs Income Gap
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Now we can impose the observed teachnology gaps between the two periods and back out the

static distortions. Table 2 summarizes our finding.
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Table 2: Calibrated Levels of the Static Distortion

ln (Yus/Ylac)
Pre-war (1900-1940) 1.21
Post-war (1948-2006) 1.44

Implied Zpre
lac /Z

post
lac 1.23

Our model predicts that the misallocation in LAC has risen by 23% between the two periods.

Moreover, within each period, 10% of the observed income gap is attributed to the indirect effect

of the static wedges on technology adoption and the rest coming from its direct effect.

Testing the mechanism. The mechanism proposed above has a directly testable implication: if

the static wedge is a major source of increased income difference, then the technology adoption lags

should have increased between two periods (as illustrated by Proposition 1). To test this empirical

conjecture, we reestimate our econometric model from Section 3 with pre-war data. The results

show that the adoption lags between 1900-1940 was 4-5 years, which is almost half of our post-war

estimates of 8-9 years. This lends support to the role of static wedges on technology adoption

process.

7 Conclusion

This paper explores the quantitative importance of delayed and incomplete technology adoption for

the productivity gap between the US and countries in LAC. To estimate the pattern of technology

adoption, we exploit the time variation in technological progress in the US and estimate the dynamic

impact of innovation on TFP growth in LAC. In our main specification, we identify a technology

shock as a shock that has a delayed effect on TFP growth in LAC. We find evidence of an 8-10

adoption lag, with complete or near-complete adoption in the long run. In other words, technological

progress has a similar contribution to TFP growth in LAC and in the US, with an 8-10 year delay.

A structural interpretation of these estimates suggests that incomplete technology adoption can

generate a TFP growth rate differential of between 0-0.5%. In the case of full adoption, technology

adoption lags generate a stable TFP gap of only 4-8%.

While our estimates suggest that technological backwardness is unlikely to generate a large

difference in TFP or TFP growth, it may be symptomatic of other distortions present in the

economy. In a simple endogenous growth framework, we explore the idea that static distortions

may reduce the incentives for technology adoption. We use our calibration to generate out-of-

sample predictions for the rate of technology adoption prior to World War 1, and find that these

predictions are consistent with our empirical estimates for the period.
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Appendix

A Relaxing the assumption that shocks to technology and non-

technology growth are independent

Our econometric specification assumes that shocks to the technology component of measured TFP

growth (xt) are independent from shocks to the non-technology component of measured TFP growth

(zt). However, there is some empirical evidence suggesting that changes in technology induce

changes in the non-technology component of TFP (for example through cyclical changes in capacity

utilization). In this Appendix, we relax the independence assumption and show that our estimation

procedure is still valid, as long as the transmission of technology shocks to the non-technology

component of TFP is the same across countries.

Consider a model in the spirit of Blanchard and Quah [1989], in which there are two types of

disturbances: a technology shock ζtecht and a non-technology shock ζnon−tech
i,t (for i = us, lac), both

i.i.d across time. It is assumed that non-technology shocks are independent from the technology

shock. The technology and non-technology components of TFP follow AR(1) processes:

xt − x̄ = α(xt−1 − x̄) + ζtecht (26)

zi,t = z1i,t + z2i,t (27)

z1i,t − z̄1i = ρi(z
1
i,t−1 − z̄1i ) + ζnon−tech

i,t (28)

z2i,t − z̄2i = α(z2i,t−1 − z̄2i ) + γζtechi,t (29)

where ζtechus,t = ζtecht and ζtechlac,t is defined by:

ζtechlac,t = xlac,t − x̄− α(xlac,t−1 − x̄) (30)

In this formulation, the non-technology component of TFP may be affected by the the domestic

non-technology shock (which may be correlated across countries), but also by the change in domestic

technology, reflecting the possibility that the introduction of a new technology may change the rate

of capacity utilization or the level of domestic demand. The non-technology component that changes

with technology is denoted by z2i,t, and it is assumed to inherit the persistence of the technology

shock.

Under the assumption that γus = γlac = γ, our identification is valid. Consider the following

transformation of the model denoted with x̃, z̃, ζ̃:

x̃i,t = xi,t + z2i,t = α(xi,t−1 + z2i,t−1) + (1 + γ)ζtecht = αx̃i,t−1 + ζ̃techt (31)

z̃i,t = z1i,t = ρiz
1
i,t−1 + ζnon−tech

i,t = ρiz̃i,t−1 + ζ̃non−tech
i,t (32)
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It is easy to see that this transformed model corresponds to our original specification: ζtech and

ζnon−tech
i are independent; demeaned growth rates at period t are given by z̃i,t + x̃i,t; and,

x̃lac,t − αx̃lac,t−1 = ζ̃techt = (1 + γ)(xlac,t − x̄− α(xlac,t−1 − x̄)) = (33)

(1 + γ)

∞∑
j=0

λt−j(xus,t − x̄) =

∞∑
j=0

λt−j(x̃t−j − ¯̃x)

Where the last equality follows from the fact that z2us,t − z̄2us = γ(xt − x̄), and x̃i = xi + z2i .

B Maximum likelihood estimation and the construction of confi-

dence intervals

To estimate the model described in section 3, we follow a unified state-space modeling approach

that lets us simultaneously estimate the model and extract the technology part of TFP growth.

A general state space form is given by:

αt = Rαt−1 + wt (34)

yt = Zαt + εt (35)

where R and Z are system matrices, as funtion of parameters to be estimated. Equation 34 is

called transition equation, equation 35 is called measurement equation. For our model, we have the

following mapping to general form:

αt =



zust

zlact

xt

xt−1

...

xt−N


(N+1)×1

yt =

[
ĝust

ĝlact

]
2×1

R =

[
Γ 03×N 03×1

0N×2 IN×N 0N×1

]
N+3×N+3

Z =

[
1 0 1 0 . . . 0

0 1 0 λ0 . . . λN

]
2×(N+3)

Γ =

 ρus 0 0

0 ρlac 0

0 0 α

 wt =



νust

νlact

ϵt

0
...

0


(N+3)×1
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where variables with a hat on top (e.g., x̂) refer to the demeaned version of the variables. Given

our assumptions on shock processes and under some regulatory conditions, we can write the joint

log-likelihood of the data as

lnP (Y1:T ) = −T ln 2π − 1

2
ln |Ft| −

1

2

T∑
t=1

ω′
tF

−1
t ωt

where ωt is the prediction error, given by ωt = yt − Zat|t−1. at|t−1 denotes the optimal predictor

of αt based on the information at t − 1 and lastly Ft is the variance of the prediction error. Note

that given the parameter values of the model, at|t−1, Ft and ωt can be obtained by running Kalman

filter recursively. Moreover, kalman filter delivers optimal filtered and smoothed estimates of the

unobserved components of the model. We initialize the filter using the unconditional mean and

unconditional covariance matrix of the state vector.

MLE estimates of the model parameters are given by

{ρ̂, p̂1, p̂2,p̂3, Ω̂} = argmax
ρ,p1,p2,p3,Ω

{lnP (Y1:T )}

subject to equation 13. Finally, the estimates for λj ’s are obtained from plugging (p̂1, p̂2,p̂3) into

equation 7.

Bootstrapping and Construction of Confidence Intervals

After getting the parameter estimates, the next step is to assess the uncertanity regarding the

parameter estimates by focusing on their distributions. For this, one can use asymptotic theory

which states that the MLE of the parameters of the model, {ρ̂, p̂1, p̂2,p̂3, Ω̂}, are consistent and

asymptotically normal. However, here we choose to make the inference based on finite sample

distribution of the model parameters by employing a bootstrap methodology. Here is some motives

to take this route;

• Our time series data have short length. Several researchers have found evidence that samples

must be fairly large before asymptotic results are applicable (Dent and Min, 1978; Ansley

and Newbold, 1980).

• It is also well known that problems in asymptotic inference occur if the parameters are near

the boundary of the parameter space, which is a possible concern for us due to our restictrions

on the parameter space.

• Moreover, it is hard to obtain asymptotic distributions of λj ’s based on the asymptotic dis-

tribution of the underlying parameters as they are nonlinear transformation of the estimated

parameters. Bootstrap procedure provides a simple way of obtaining finite sample distribu-

tions λj and their cumulative values.

Let Θ̂ := [ρ̂, p̂1, p̂2,p̂3, Ω̂] be MLE from above model. Given Θ̂, the steps for obtaining finite sample

distribution of λ̂j , j = 0, 1, ..., N as follows
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1. By using Θ̂ and the model, construct the implied innovations (prediction errors), {ω̂1, ω̂2, ... ˆ, ωT }.
This can be done by running Kalman filter.

2. Sample, with replacement, T times from the set {ω̂1, ω̂2, ... ˆ, ωT } to obtain {ω∗
1, ω

∗
2, ..., ω

∗
T }, a

bootstrap sample of innovations.

3. Construct a bootstrap data set, {y∗1, y∗2, ..., y∗T } from the model equations (equation 34 and

35) by using Θ̂ and {ω∗
1, ω

∗
2, ..., ω

∗
T }9.

4. Using the bootstrap data set {y∗1, y∗2, ..., y∗T } , construct the log-likelihood, lnP (Y ∗
1:T ), and

obtain the MLE of Θ say, Θ̂∗. Then, by using equation ??, obtain the corresponding λ̂∗
j for

∀j.

5. Repeat steps 2 through 4, a large number, B, of times, obtaining a bootstrapped set of

parameter estimates {λ̂∗
j,b ; b = 1, ..., B}. The finite sample distribution of our original MLE

estimates λ̂j may be approximated by the distribution of λ̂∗
j,b, for b = 1, ..., B.

After obtaining the sequence of λ̂∗
j,b, b = 1, ..., B, which constitutes the sampling distribution of

λ′
js, we construct a 90% confidence interval, based on 5% and 95% percentiles of the bootstrap

sequence.

9The state-space representation given by (34) and (35) does not depend on prediction error, ωt, directly. The
actual practice is to construct the bootstrap data set based on what is called “one-shock representation” of the
state-space model in which prediction error appears directly.
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Figure 13: The distribution of adoption lags for different values of p1, p2, and
p3, given the discrete Normal distribution (equation 7). The left panels illustrate
the implied marginal adoption rates, and right panels illustrate the corresponding
implied cumulative adoption rates.
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(a) Marginal adoption rates: SR
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(b) Cumulative adoption: SR
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(c) Marginal adoption rates: GDP
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(d) Cumulative adoption: GDP

Figure 14: Estimated marginal and cumulative adoption rates in the baseline spec-
ification. In the first row, measured TFP growth is constructed as the growth
of the Solow residual (without consideration of human capital). In the second
row, measured TFP growth is constructed simply as GDP growth. The “frontier
country” is the US, and the “adopting country” is a GDP-weighted average of LAC
countries. Dotted lines represent the bounds of the 90% confidence intervals.
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(a) Marginal adoption rates: SR
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(b) Cumulative adoption: SR
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(c) Marginal adoption rates: GDP
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(d) Cumulative adoption: GDP

Figure 15: Estimated marginal and cumulative adoption rates, without imposing a
discrete Normal distribution on the marginal adoption rates. In the first row,
measured TFP growth is constructed as the growth of the Solow residual (with-
out consideration of human capital). In the second row, measured TFP growth is
constructed simply as GDP growth. The “frontier country” is the US, and the
“adopting country” is a GDP-weighted average of LAC countries. Dotted lines
represent the bounds of the 90% confidence intervals.
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Figure 16: Estimated cumulative adoption rates, using three alternative identify-
ing assumptions: the independence of zus,t and zlac,t at an annual frequency, unfil-
tered (panel (a)), HP filtered - trend (panel (b)) and HP-filtered - cycle (panel
(c)). Measured TFP growth is constructed as the growth of the Solow residual
(with consideration of human capital). The “frontier country” is the US, and the
“adopting country” is a GDP-weighted average of LAC countries. Dotted lines
represent the bounds of the 90% confidence intervals.

Table 3: Average adoption lags (by technology)

Technology name U.S. Latin America All countries

Aviation freight 24.39 32.62 43.48
Aviation passengers 26.16 28.94 33.89
Cars 14.23 37.67 43.68
Cellphones 9.80 16.78 14.61
Electricity 19.40 51.67 56.36
Internet 4.40 8.68 7.79
MRI 2.92 . 5.30
PCs 7.66 15.53 13.96
Ships 29.71 111.07 120.45
Telegraph 31.85 53.27 45.61
Telephone -0.31 40.35 51.45
Trucks 18.34 29.81 39.13
Blast oxygen steel 8.83 17.09 16.31
Railway freight 43.93 85.23 79.59
Railway passengers 55.81 98.36 97.32

TOTAL 19.81 42.08 45.48
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Figure 17: Estimated cumulative adoption rates, using the baseline specification in
a multi-country setting. Measured TFP growth is constructed as the growth of
the Solow residual (with consideration of human capital). Dotted lines represent
the bounds of the 90% confidence intervals.
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(a) Agriculture
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(b) Mining
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(c) Construction
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(d) Manufacturing
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(e) Wholesale and retail, ho-
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(f) Transport, storage, and
communication
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(g) Finance, insurance and
real estate
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(h) Public utilities
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(i) Community, social and
personal services

Figure 18: Estimated cumulative adoption rates, using the baseline specification, by
industry. Measured productivity growth is constructed as the growth of the real
value added per worker. Dotted lines represent the bounds of the 90% confidence
intervals.
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